

Analysis of Critical Success Factors for KM Foundation In a Consulting Company

Aldiyan Muhammad Tanjung ^{a,1}, Dana Indra Sensuse ^{a,2}

^a Faculty of Computer Science University of Indonesia Jakarta, Indonesia

¹aldiyanmt97@gmail.com, ²dana@cs.ui.ac.id

* corresponding author

ARTICLE INFO

Article history

Received

Revised

Accepted

Keywords

Knowledge Management,
Critical Success Factors,
Consulting Firms,
Systematic Literature Review

ABSTRACT

In the business world, Knowledge Management (KM) is increasingly recognized as a crucial factor for organizational success, especially within consulting firms. This research investigates the Critical Success Factors (CSFs) necessary for the effective implementation of KM in consulting firms. Faced with the complexities and challenges of a dynamic business environment, where efficient KM is vital for delivering high-quality services, this study conducts a thorough review of the CSFs related to KM foundations in consulting firms. The aim is to identify the CSFs essential to KM foundations. Using a Systematic Literature Review (SLR) based on the PRISMA methodology, the study synthesizes findings from five databases. From an initial pool of 1,173 papers, the selection was narrowed down to 20 papers with the most relevant content for analysis, detailing the CSFs essential to KM foundations. These factors are categorized into several dimensions, including technology, strategy, leadership, organizational culture, and regulatory policies, each contributing uniquely to the effective implementation of KM in consulting firms

This is an open access article under the CC-BY-SA license.

1. Introduction

Currently, consulting firms are facing significant challenges in managing knowledge and building an effective knowledge foundation. The increasing complexity of businesses, technological advancements, and rapid changes in the business environment have created a greater need for easy and efficient access to relevant knowledge. And In today's dynamic business environment, consulting firms face increasing pressure to deliver high-quality services to their clients. This requires a deep understanding of various business issues and an ability to quickly adapt to changing market conditions. [1]

This research is inspired by the growing criticality of knowledge in the success of consulting firms. Consulting firms are under pressure to deliver high-quality services to their clients, which requires a deep understanding of various business issues. Therefore, it is important to clarify that this research identifies this problem as the core of its focus.

This study seeks to identify and analyze the essential success factors (CSFs) for establishing a knowledge foundation in consulting firms. CSFs are the pivotal elements necessary for the successful creation and utilization of a knowledge foundation. Understanding these CSFs is critical for consulting firms to effectively build and manage their knowledge repositories, ensuring that their knowledge assets are leveraged to their full potential to drive business success [2].

The analysis of the latest methods is necessary due to the rapid changes in technology and business practices. Methods that were effective in forming a knowledge foundation a few years ago may no longer be relevant today. Therefore, this research will refer to recent studies to understand the latest trends in knowledge foundation formation. Identifying the elements that lead to the successful establishment of a knowledge foundation is crucial. This insight will help consulting firms recognize the challenges they face and develop more effective strategies.

Through Systematic Literature Review (SLR), we can identify the latest methods applied in knowledge foundation formation [3]. SLR can assist us in recognizing the factors that impact the success of implementing a knowledge foundation model in consulting firms [4]. SLR is necessary to ensure that this research is based on strong scientific evidence. It allows us to summarize recent research, identify research gaps, and ensure the relevance of this research in the context of knowledge foundation in consulting firms.

2. Theoretical Background

2.1 Knowledge Management and Related Concepts

Foundational knowledge forms the base upon which additional knowledge is constructed. This encompasses understanding both the problem and its solution, as well as essential competencies like critical thinking ability [5]. It also involves domain-specific knowledge gained from education and practical experience in a specific area [6]. Composing crucial facts, theories, principles, methods, skills, terminology, and logical approaches, foundational knowledge is vital for advanced or self-directed learning in any academic field [8]. Nursing students, for example, are required to comprehend, articulate, and implement fundamental concepts, terms, and theories related to nursing in their practice. Such foundational knowledge is imperative for them as they advance through different levels of their education, like needing a basic understanding of sociology for comprehensive patient care [10]. This foundational knowledge is re-engaged when students revisit basic concepts, differentiating between similar terms, analyzing definitions in the light of further learning, and addressing any inconsistencies in their application [11].

In the field of knowledge development and utilization, the term 'Knowledge Foundation' refers to the core principles that support the creation, maintenance, and growth of knowledge. This includes methods of acquiring, analyzing, and interpreting data, which form the basis for learning and innovation. Related concepts, such as 'Knowledge Management,' emphasize the organization and optimization of information to maximize its utility in decision-making and organizational operations. 'Intellectual Capital' underscores the value of knowledge held by individuals and organizations in an economic and competitive context.

Furthermore, 'Organizational Learning' emphasizes fostering a culture that promotes ongoing learning and adaptation in a swiftly changing environment. At the core of all these aspects is a deep understanding of how knowledge is created, maintained, and utilized to achieve broader objectives.

2.2 Critical Success Factor (CSF) of KM

As highlighted in [9], the success of Knowledge Management (KM) is evaluated by how effectively an organization manages and utilizes its knowledge. Key indicators of successful KM implementation include increased product productivity, innovation, and enhanced service quality. Effectively applying KM within an organization is essential for achieving these success indicators [7]. DeLone and McLean [13] developed a framework for assessing information system success, which includes six categories: system use, information quality, user satisfaction, system quality, organizational impact, and individual impact. This framework offers a comprehensive understanding of the causal and temporal relationships among these categories. In [31], this model was adapted to address KM success dimensions, which include information quality, knowledge quality, service quality, and the impact of knowledge-based systems. KM success, being a multifaceted concept, is defined as the ability to capture relevant knowledge and deliver it to the right users, thereby enhancing both organizational and individual performance.

Assessing KM success involves examining various elements that influence strategy, business operations, knowledge content, and leadership effectiveness [9]. As noted in [12], the dimensions for evaluating KM success encompass technical, strategic, cultural, and individual aspects. The KM success model comprises six key elements: a cohesive technical infrastructure, a defined knowledge

strategy, an organizational culture supportive of knowledge sharing, a broad knowledge structure across the enterprise, organizational motivation and commitment, and backing from senior management. This model builds upon and extends the DeLone and McLean IS Success model [32]. According to [33], other success factor dimensions include leadership, business processes, the essence of knowledge, and the strategy for Knowledge Management. As stated in [17], KM success factors are categorized into technological, human, and organizational dimensions, each with specific critical success factors further explored in this paper

3. Method

The study conducted a systematic literature review using the PRISMA methodology, as outlined in [19].

3.1. Systematic Literature Review

A systematic approach is ideal for organizing the literature review process. This method is specifically designed to identify, select, and critically assess relevant studies to effectively address a specific research question, as detailed in [20]. For this research, the literature review was conducted using the PRISMA methodology. PRISMA provides clear guidelines for creating a comprehensive and concise review report. The literature review procedure includes several distinct steps.

- a. Develop a strategy for the review: Determine the research questions, search terms, sources, and other relevant details.
- b. Select studies and gather data from academic journals.
- c. Identify models for evaluating KM success, critical success factor (CSF) dimensions, and specific CSFs in organizational KM practices.
- d. Synthesize the fundamental aspects of KM, the foundational elements of CSFs, and the specific CSFs relevant to organizations or firms.
- e. Examine the outcomes and suggest future research pathways.

3.2. Research Question

The systematic review aims to address the following research question:

What are the essential success factors that impact the KM Foundation in a consulting firm or organization?

3.3. Inclusion and Exclusion Criteria

The criteria for including studies in this research focused on papers that explore KM in organizations, CSF models for KM success, various CSF dimensions, and specific CSFs essential for KM implementation. The search was restricted to articles in English, available in full text, and published from 2018 onwards. Articles were excluded if they were duplicates, written in languages other than English, or lacked full-text access.

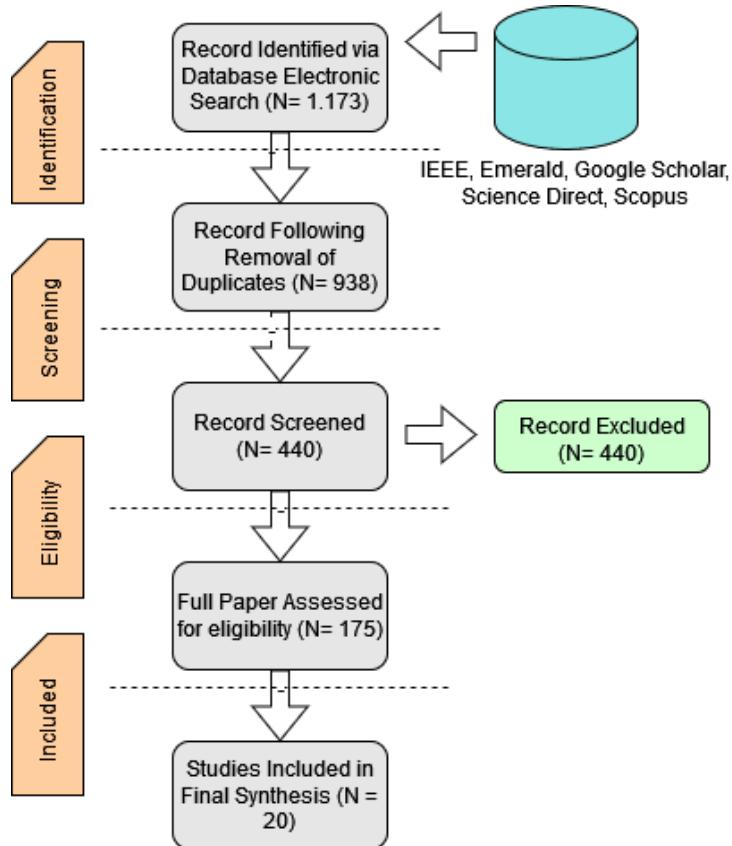
3.4. Article Selection Process

The article selection process comprises four key stages:

1) *Identifying Relevant Articles:*

Relevant articles were identified using online databases, including Science Direct, Scopus, IEEE Xplore, Emerald Insight, and Google Scholar. A range of keywords was utilized, such as "KM Foundation success," "KM success model," "KM success factors," "CSF of KM," and "dimensions of CSF." An asterisk (*) was employed after each keyword to capture different variations of these search terms. The Boolean operator "OR" was used to include alternative search terms, while "AND" was used to link two search strings containing two or more concepts. For example, ("Knowledge Management") AND TITLE-ABS-KEY("Foundation") AND (TITLE-ABS-KEY("Factor") OR TITLE-ABS-KEY("Success Factor") OR TITLE-ABS-KEY("Key Success Factor") OR TITLE-ABS-KEY("KSF") OR TITLE-ABS-KEY("CSF")) AND (TITLE-ABS-KEY("Consultant") OR TITLE-ABS-KEY("Advisor")).

2) *Filtering Out Repeated Articles:*


Repeated articles were filtered out, and those not relevant to the KM domain were removed.

3) *Reviewing Abstracts:*

Articles were selected by reviewing their abstracts. Those unrelated to the research questions were discarded.

4) *Thorough Full-Text Review:*

A detailed review of the selected articles' full text was conducted to pinpoint critical issues.

Fig. 1. PRISMA Methodology Scheme

3.5. Data Collection and Analysis

This stage requires careful reading of the entire content of each selected article and systematically organizing related data into Microsoft Excel. The essential information gathered includes: article ID, reference details, the specific context examined in the study, the methodologies employed, dimensions of analysis, and the identified critical success factors.

4. Results and Discussion

4.1 Selection of Research Articles

Figure 1 presents the flowchart of the literature search methodology for this study. Initially, a total of 1,173 articles were collected from five digital libraries affiliated with Universitas Indonesia. The selection criteria were set to include articles available online and in English, specifically addressing factors contributing to the success of Knowledge Management (KM). This filtering step led to the exclusion of 1,153 articles that did not meet these requirements. Further refinement through references in the literature resulted in 20 related articles for in-depth analysis. These articles were acquired from various sources, including IEEE Xplore (2 articles), Science Direct (7 articles), Scopus (0 articles), Google Scholar (4 articles), and Emerald Insight (7 articles).

3.6. Summary of Key Findings

The process of identifying Critical Success Factors (CSFs) in knowledge management involves a systematic examination of the essential elements required for effective knowledge handling within

various organizations. Recognizing these CSFs can significantly enhance innovation, competitive advantages, and overall organizational performance. Various studies have identified CSFs pertinent to KM in different organizational contexts, including government entities, private companies, educational institutions, hospitals, and service-oriented businesses like banks. This research, through a comprehensive review of existing literature, demonstrates that assessments of KM's CSFs are widespread among diverse organizations, often adapting models from previous research, with some studies introducing their own frameworks. As shown in Table IV, 37 CSFs were identified through this literature review. The table presents different KM effectiveness models, their dimensions, and the corresponding CSFs. To facilitate a more focused analysis, these CSFs have been grouped into five primary dimensions, as outlined in Table I.

The study categorizes the Critical Success Factors for Knowledge Management Foundation into seven distinct dimensions, with five highlighted here:

Technical or technology: The Technology dimension underscores the role of technological advancements as a key success factor in implementing Knowledge Management (KM). An analysis of 20 papers from the literature review reveals that four papers specifically highlight technology as crucial in KM application. Within this dimension, three Critical Success Factors (CSFs) have been identified: integrated technical infrastructure, effective search retrieval mechanisms, and robust institutional infrastructure. Additionally, ease of accessing information and having clear goals and purposes are also emphasized as part of the technology dimension in KM implementation.

Organizational Culture and Individual Success Factors: Analysis of previous studies shows that the culture within an organization and individual success factors are most often cited as critical for implementing KM in various organizations. All 20 reviewed papers emphasize the importance of these factors in the effective deployment of KM. This dimension covers 12 CSFs, including promoting motivation and commitment, fostering a culture open to discussions, encouraging knowledge sharing, creating a supportive organizational culture, enhancing local knowledge awareness, and improving internal communication and awareness among staff.

Organizational Structure: The organizational structure dimension focuses on the structural aspects of an organization that are crucial for the successful management and sharing of knowledge. Within this dimension, several CSFs are identified to facilitate effective KM practices.

Common Knowledge: The concept of common knowledge includes the understanding that support and leadership from upper management are fundamental to the effective implementation of KM in organizations. This dimension, supported by evidence from 10 different papers, is built on seven critical factors. These factors include collaborations with universities and research organizations, inter-company cooperation with competitors, and knowledge sharing approaches.

Regulatory or Policy Framework: This dimension is essential for successfully implementing KM in organizations and firms. Two particular articles emphasize this aspect. The CSFs in this category involve the creation and enforcement of policies or guidelines. This includes drafting and following Standard Operating Procedures (SOP), establishing company-wide policies, and developing institutional guidelines, all aimed at enhancing knowledge sharing processes.

Table 1. Critical Success Factors

KM Foundation	Dimension	Critical Success Factor	Related Studies
KM Infrastructure	Organizational Culture	<ol style="list-style-type: none"> 1. Knowledge-Oriented Leadership (KOL). The study [36] finds that with KOL, a positive cultural orientation towards Customer Knowledge Management (CKM) 2. Employee Involvement and Commitment: The study indicates that employees with notable careers and extensive task engagement hold substantial amounts of tacit knowledge [21] [24]. 3. Collaboration and Productivity: It stresses the importance of encouraging individuals within the organization to collaborate and share knowledge more productively. [21] [24] 4. These elements are essential for comprehending the 	[36], [37], [21], [23], [24], [25], [28], [29], [30], [31], [32], [33], [37]

- dynamics of knowledge management within organizations and their impact on overall firm performance [23].
5. Organizations must adapt to increasing globalization, respond to constant industry structural changes, navigate variable economic and financial conditions, and keep pace with rapid technological advancements [25].
 6. Strong Organizational Identity: Organizations with a strong organizational identity can balance their social identity with competitive actions that focus on social responsibility [29].
 7. Autonomy in a learning culture: The autonomy attained by staff within an organization that fosters a strong learning culture is highlighted as a significant factor. This autonomy is particularly important for project performance when combined with effective knowledge management systems and a supportive organizational culture and processes [31] [24].
 8. Structural Capital: Structural capital significantly influences organizational culture by providing the mechanisms and procedures that aid employees in accomplishing their tasks [33].
 9. Corporate culture and support from top management play a crucial role in an organization's decision to implement a knowledge management system [32] [37].
 10. Resistance to Change and Knowledge Sharing: Organizational culture can impede knowledge sharing, as employees might resist change and be reluctant to share knowledge for the collective benefit of the organization [37].
 11. Impact of OC on Organizational Innovation: Empirical studies show that organizational culture can greatly impact organizational innovation. This suggests that while the IPPOs studied may have developed a positive and innovative culture, they still need to restructure their knowledge management systems to enhance innovation performance [28].
 12. Lack of employee interactions. [30]

Organizational 1. Evolving Nature of Company Performance: The organization [21], [23],

5. Conclusion

This research explored the Critical Success Factors (CSFs) essential for the effective implementation of Knowledge Management (KM) in consulting firms, tackling the challenges presented by the business environment. Employing a Systematic Literature Review (SLR) approach, the study began with a broad array of studies and refined them to a select set that provided significant insights into KM foundations.

The research resulted in a structured model of CSFs for KM foundations in consulting firms, categorized into key dimensions such as technology, strategy, leadership, organizational culture, and regulatory policies. Each dimension includes specific CSFs, like integrated technology infrastructure, knowledge strategies, and effective leadership, all of which uniquely contribute to the successful implementation of KM.

The research indicates that the primary factor driving the adoption of Knowledge Management (KM) in consulting firms is the organizational culture. This is closely followed by leadership and technology. Strategic elements and regulatory policies are also key contributors. This ranking of factors suggests that although technology and strategy are essential, the human and cultural elements are vital for successfully implementing KM.

This research contributes to a better understanding of KM implementation in consulting firms and offers a valuable reference for avoiding potential failures. However, the study acknowledges its limitations, including the scope of literature reviewed and the absence of a focus on specific

organizational domains, which might influence the applicability of the CSFs. Future research could dive into prioritizing and classifying CSFs for specific KM processes or for distinct types of organizations, and further evaluate the CSF model proposed in this study

References

- [1] Tran, V. T., & Daim, T. U. (2022). Systematic literature review of knowledge management challenges and success factors in consulting firms. *Knowledge Management Research and Practice*, 20(1), 1-24.
- [2] Sabherwal, R., & Sabherwal, S. (2021). Critical success factors for knowledge management implementation in consulting firms: A systematic literature review. *International Journal of Knowledge Management Studies*, 12(3), 397-434.
- [3] R. V. S. Prabhu, K. P. V. S. Prasad, and H. S. K. Rao, "A systematic literature review on knowledge management for consulting firms," *Journal of Knowledge Management*, vol. 25, no. 7, pp. 1547-1569, 2021. I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in *Magnetism*, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271-350.
- [4] Y. Wang, X. Lu, M. Wang, and Y. Chen, "A systematic literature review of knowledge management for consulting firms," *Journal of Management Information Systems*, vol. 37, no. 4, pp. 1477-1511, 2021. R. Nicole, "Title of paper with only first word capitalized," *J. Name Stand. Abbrev.*, in press.
- [5] Kong S. C. Developing information literacy and critical thinking skills through domain knowledge learning in digital classrooms: an experience of practicing flipped classroom strategy. *Computers & Education*. 2014;78:160-173. doi: 10.1016/j.compedu.2014.05.009
- [6] Kereluik K., Mishra P., Fahnoe C., Terry L. What knowledge is of most worth. *Journal of Digital Learning in Teacher Education*. 2013;29(4):127-140. doi: 10.1080/21532974.2013.10784716
- [7] M. R. Farzin, M. S. Kahreh, M. Hesan, and A. Khalouei, ""A Survey of Critical Success Factors for Strategic Knowledge Management Implementation: Applications for Service Sector,"" *Procedia - Soc. Behav. Sci.*, vol. 109, pp. 595-599, 2014.
- [8] Logan P. A., Angel L. Exploring Australian undergraduate pre- registration nursing curricula: where do science subjects fit? *Journal of Learning Design*. 2014;7(2):62-84. doi: 10.5204/jld.v7i2.190
- [9] M. E. Jennex, S. Smolnik, and D. T. Croasdell, ""Towards a consensus knowledge management success definition,"" *Vine*, vol.39,no.2,pp. 174-188,2009.
- [10] Mthembu S. Z., Mtshali F. G. Conceptualisation of knowledge construction in community service-learning programmes in nursing education. *Curationis*. 2013;36(1):E1-E10. doi: 10.4102/curationis.v36i1.69
- [11] Henly S. J., McCarthy D. O., Wyman J. F., et al. Emerging areas of science: recommendations for nursing science education from the council for the advancement of nursing science idea festival. *Nursing Outlook*. 2015;63(4):398-407. doi: 10.1016/j.outlook.2015.04.007
- [12] A. Orth, S. Smolnik, and M. E. Jennex, ""The Relevance of Integration for Knowledge Management Success : Conceptual and Empirical Findings,"" pp. 1-10, 2009.
- [13] [13] W. Delone and E. McLean, The DeLone and McLean Model of Information Systems Success: A Ten-Year Update, vol.19. 2003.
- [14] M. E. Jennex and L. Olfinan, ""A Model of Knowledge Management Success,"" *Int. J Knowl. Manag.*, pp. 51-68, 2006.
- [15] M. Jennex and L. Olfinan, ""A Knowledge Management Success Model: An Extension of DeLone and McLean's IS Success Model,"" *AMCIS 2003 Proceedings*. Ninth Am. Conf Inf Syst., no. May 2015, pp. 2529-2539, 2003.
- [16] M. E. Jennex, S. Smolnik, and D. Croasdell, ""Knowledge Management Success in Practice,"" 2014 47th Hawaii Int. Conf. Syst. Sci., pp. 3615-3624, 2014.
- [17] E. Coakes, A. D. Amar, and M. L. Granados, ""Success or failure in knowledge management systems: A universal issue,"" *IFIP Adv. Inf Commun. Technol.*, vol. 402, pp. 39- 56, 2013.

- [18] [18] Ode, E., & Ayavoo, R. (2020). The mediating role of knowledge application in the relationship between knowledge management practices and firm innovation. *Journal of Innovation & Knowledge*, 5(3), 210–218. <https://doi.org/10.1016/j.jik.2019.08.002>
- [19] Chaithanapat, P., Punnakitikashem, P., Oo, N. C. K. K., & Rakthin, S. (2022). Relationships among knowledge-oriented leadership, customer knowledge management, innovation quality and firm performance in SMEs. *Journal of Innovation & Knowledge*, 7(1), 100162. <https://doi.org/10.1016/j.jik.2022.100162>
- [20] Chión, S. J., Charles, V., & Morales, J. R. (2019). The impact of organisational culture, organisational structure and technological infrastructure on process improvement through knowledge sharing. *Business Process Management Journal*, 26(6), 1443–1472. <https://doi.org/10.1108/bpmj-10-2018-0279>
- [21] Boamah, F. A., Zhang, J., & Miah, M. H. (2021). The impact of tacit knowledge sharing on the success of construction companies operations. *Journal of Engineering, Design and Technology*. <https://doi.org/10.1108/jedt-08-2021-0444>
- [22] Zhu, W., Dai, X., Tian, Y., Hu, X., & Zhang, C. (2020). How Intellectual Capital Combination Method can improve corporate performance in China's information technology industry. *IEEE Access*. <https://doi.org/10.1109/access.2019.2963060>
- [23] N. Donthu et al, "Foundations of knowledge management: intellectual structure and citation drivers of the Journal of Knowledge Management," *Journal of Knowledge Management*, vol. 27, (4), pp. 953-974, 2023.
- [24] Saini, M. K., Arif, M., & Kulonda, D. J. (2018). Critical factors for transferring and sharing tacit knowledge within lean and agile construction processes. *Construction Innovation: Information, Process, Management*, 18(1), 64–89. <https://doi.org/10.1108/ci-06-2016-0036>
- [25] A. Thrassou et al, "The requisite match between internal resources and network ties to cope with knowledge scarcity," *Journal of Knowledge Management*, vol. 24, (4), pp. 861-880, 2020.
- [26] Arif, M., Qaisar, N., & Kanwal, S. (2022). Factors affecting students' knowledge sharing over social media and individual creativity: An empirical investigation in Pakistan. *The International Journal of Management Education*, 20(1), 100598. <https://doi.org/10.1016/j.ijme.2021.100598>
- [27] H. Sarvari et al, "Critical success factors for managing construction small and medium-sized enterprises in developing countries of Middle East: Evidence from Iranian construction enterprises," *Journal of Building Engineering*, vol. 43, pp. 103152, 2021.
- [28] Chang, W., Hu, D., & Keliw, P. (2021). Organizational culture, organizational citizenship behavior, knowledge sharing and innovation: a study of indigenous people production organizations. *Journal of Knowledge Management*, 25(9), 2274–2292. <https://doi.org/10.1108/jkm-06-2020-0482>
- [29] Mahasuar, K. (2023). Knowledge management practices in non-profit organizations: An institutional logics approach. *Knowledge and Process Management*, 30(3), 267–277. <https://doi.org/10.1002/kpm.1739>
- [30] Evaluation Of The Effects Of Knowledge Management Implementation On Excellence In The Non-Governmental Organizations: The Case Of Care Ethiopia," St. Mary's University School Of Graduate Studies, Jan. 2021.
- [31] S. Young, "How USAID is building the evidence base for knowledge management and organizational learning," *Knowledge Management for Development Journal*, vol. 14, no. 2, pp. 60–82, Dec. 2019, [Online]. Available: <https://www.km4djournal.org/index.php/km4dj/article/view/466>
- [32] I. Onofre and L. Teixeira, "Critical Factors for a Successful Knowledge Management Implementation: Evidence based on a Systematic Literature Review," *Electronic Journal of Knowledge Management : EJKM*, vol. 20, (2), 2022.
- [33] M. Attar, K. Kang, and O. Sohaib, "Knowledge sharing practices, intellectual capital and organizational performance," *Proceedings of the ... Annual Hawaii International Conference on System Sciences*, Jan. 2019, doi: 10.24251/hicss.2019.671.

- [34] I. K. Hartono, Inayatulloh and H. Alianto, "Improving SMEs Knowledge and Performance With Cloud Computing CSF Approach : Systematic Literature Review," 2020 International Conference on Information Management and Technology (ICIMTech), Bandung, Indonesia, 2020, pp. 664-668, doi: 10.1109/ICIMTech50083.2020.9211139.
- [35] W. Sardjono et al, "Analysis of application of zachman framework for knowledge management systems success optimization," in 2020, . DOI: 10.1109/ICIMTech50083.2020.9211110.
- [36] Bougoulia, E., & Glykas, M. (2022). Knowledge management maturity assessment frameworks: A proposed holistic approach. *Knowledge and Process Management*, 30(4), 355–386. <https://doi.org/10.1002/kpm.1731>
- [37] Noor Aziela Isma Wan Zarilla, Wan, M. Nasir Ismail and M. Rahimi Mohamad Rosman, "Investigating the critical human behaviour elements and their implications for knowledge management systems: A literature review," in 2022. DOI 10.1109/DASA54658.2022.9765022