ilearning model approach in creating Blockchain based Higher Education trust

Aang Solahudin Anwar^{a,1}, Untung Rahardja^{b,2}, Anggy Giri Prawiyogi^{a,3}, Nuke Puji Lestari Santoso^{c,4}, Sabda Maulana^{c,5*}

^a Faculty of Teacher Training and Education, Universitas Buana Perjuangan Karawang, Karawang, Indonesia
 ^b Faculty of Engineering, Universitas Teknologi Malaysia, Kuala Lumpur, Malaysia
 ^c Faculty of Sains and Technology, Universitas Raharja, Tangerang, Indonesia

¹ aang.solahudin@ubpkarawang.ac.id; ² rahardjauntung@graduate.utm.my; ³ anggy.prawiyogi@ubpkarawang.ac.id; ⁴ nuke@raharja.info; ⁵ sabda@raharja.info;

* corresponding author

ARTICLE INFO

ABSTRACT

Article history: Received 05 Nov 2021 Revised 11 Dec 2021 Accepted 23 Feb 2022

Keywords: Blockchain Competencies Digital Certificate Education iLearning

Today, higher education presents challenges in terms of education and industry collaboration. Both theoretical and practical, formal and informal are also part of the application of blockchain in education. Moreover, the assessment is still quite difficult to measure the level of student skills in order to be able to compete for jobs in the future. With the problem of the academic curriculum still using written media on paper, problems often arise regarding reliable validity, this is the basis for the problems in this study. From these problems, a solution was created to improve the higher education curriculum to find revolutionaries for document validation beliefs. Evaluation of the iLearning learning system combined with blockchain technology has the benefit of being able to be used as a solution to these problems. By using Blockchain technology, a new learning model innovation is created in the form of the SCi-B (Student-Centered iLearning Blockchain) framework. SCi-B is a new innovation in the learning model where all activities use Blockchain so that its existence is able to manage and store all transactions, competencies, and teaching that can provide intensive assessments through digital certificates for the academic world and the world of work. So that SCi-B has a significant effect on the confidence in the results that have been obtained. Research has a goal to answer the challenges of the world of education which is currently increasingly widespread, open, and everywhere. The model in the SCi-B framework of this paper can be used for all training institutions because it can adapt to the specific professional needs of the occupational sector. This model has been validated by the existence of a web application that is very satisfying to use.

ISSN: 2579-7298

Copyright © 2017 International Journal of Artificial Intelegence Research.

All rights reserved.

W: http://ijair.id | E: info@ijair.id

I. Introduction

The increasing model of higher education in this increasingly decentralized era makes it difficult to verify and validate, various problems often arise in professional training that will be channeled into the world of work [1]. More extensive training for students to receive training has developed, such as the holding of large-scale open online courses (MOOC), small scientific meetings both in person and remotely, and video tutorials which have become very popular [2]. These sources of information, as well as expert practice itself, discuss a range of potential outcomes that empower students to gain skills to use as they enter the workforce and the professional world. Referring to organized studies that have links to several administrative centers can create difficult problems in assessing, measuring, and validating students' knowledge [3]. Moreover, if it comes from regulated studies, the varied syllabus designs make students have to make a lot of written documents, have to attend face-to-face at every exam, and conduct interviews in person, as well as prove their qualifications and

competencies. From these facts, it can be used as reference material so that this research can answer the difficulties currently being faced in order to adapt to the widespread needs of the industry in finding competent workers [4]. It is not possible to improve CV preparation as well as to recruit personnel making it often difficult to determine graduates who feel better prepared for professional work. In addition, fraud is also common, making it difficult for companies to validate data from students who claim to be competent in the required field, making it difficult to find highly qualified professionals. With research on the innovation of the iLearning learning model by utilizing the SCi-B Blockchain technology, it can be used as a solution to this problem, because using the basic concepts of a decentralized, secure, and transparent Blockchain will make data validation achievable so that the problem of self-validation fraud will be reduced [5]. This paper aims to create a model of an iLearning learning system combined with the use of Blockchain technology (because its use is known as decentralized, secure, transparent) in open and ubiquitous higher education, recording and acquisition are carried out to validate it according to the business context [6]. The use of this model has achieved the following objectives:

O1 The industry's need for a workforce is easier for training institutions to teach because training institutions can adapt industry needs to the teaching they do.

O2 education that is complete, legal, digital, always updated CV can be owned by students in this iLearning learning model and is supported by technology from blockchain making its validity verifiable by anyone.

O3 Digital Certificates, CVs, and document management that still rely on paper are no longer needed and this makes document forgery manageable [7].

The remainder of the research is described as follows: Section 2 shows the systematic review procedure that supports this research. Section 3 shows the methods used during this research. Section 4 provides results as well as an in-depth analysis. Section 5 will focus on the discussion of this research specifically on blockchain technology. Finally, Section 7 conclusions from this study [8].

II. Literature Review

The application of the SCi-B learning model has spread to many other fields including in the world of education, especially iLearning-based. Digital certification takes the role of the most benefited from the existence of this blockchain technology because it is accompanied by advantages which are validated by the institution / university that published it, ultimately irreversible and transferable, packaged in a special blockchain made with this purpose [9]. Through this SCi-B learning model the data created cannot be changed. For this reason, it is possible for students to apply SCi-B because it can provide the authenticity of the certification and their qualifications can be validated by the employer and cannot be faked [10]. The model that is most favored from many other models is the model of this digital certification, where there is already support and from large institutions [11], and has been adopted by several leading universities such as (University of Oxford, Stanford University, University College London) and also several institutions. private companies such as (SONY, SAP, IFTF) and ACT Foundation which have announced an idea called "The Ledger" which combines learning with income [12]. The slogan "Learning is Earning" was put forward as part of a game that refers to a window to the future, in 2025, which uses Edublock, which is the currency that regulates the hours of learning as transactions that can be stored on the blockchain. Unlike the Block cert in this case [13] the qualification is not a stored thing, but it is not used to validate it as a digital curriculum from an employer's point of view. On the other hand, Edge coin is [14] making a special Bitcoin-based cryptocurrency, which aims in the field of education to regulate the goods and services industry, such as learning using the iLearning concept that is carried out online, contracts between micro-based training institutions, or the process of digital economic transactions [15].

III. Methods

This SCi-B learning model uses blockchain technology because of its ability to be safe, reliable, transparent and able to decentralize and distribute digital transaction records [16]. In addition, the survey method is also another factor that supports this research with 180 participant responses supported by 25 questions regarding their level of satisfaction using the SCi-B learning model which will be described in the results section. With the enormous potential of this technology which often

makes it very complex, this complexity occurs because its main potential is to carry out all transactions or activities almost without going through intermediaries. Peer to Peer (P2P) and Up to Down (U2D) are the main dependencies of the non-intermediation interpretation problems that are formed.

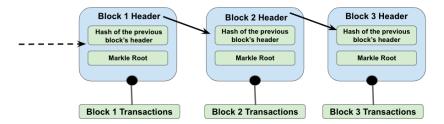


Fig. 1 General structure of Blockchain

Taking pictures. 1, shows the Blockchain structure which is a block of transactions that have been sequenced and linked, each identification is carried out by the presence of a hash function (fixed length numeric digital summary) [17]. The multi-step computation process from several hashes to finally reaching the last, known as Markle root, is the process that will produce Markle root. Thus, the process of storing the hashes of each block will be sent to the header of the previous block, which will make these blocks one/merge. Block generation (Proof of Work, POW) is carried out and managed by all network members collaborating with Blockchain, significant and relevant work has also been invested in the creation of these blocks. This way can prevent users who try to modify previous blocks thus making bad users work more, unlike honest users who just add new blocks. Since the block is bound to the previous locale, it is not possible to change only one block without changing the other blocks. Hash functions that have random properties can be used to create working test algorithms. The work that has been done can be proven by adding another square, where the hash is created based on a header that has a certain value and does not exceed it [18].

There are elective executions of blockchain apart from Altcoin, namely Alt chain which consists of a consensus algorithm and a distributed notebook as a platform for registering names, contracts, etc. The main purpose of this alt chain is not as currency even though it has the same block structure and coins or tokens as a means of payment. Ethereum is important from the others, because Ethereum is a platform that provides a platform to facilitate blockchain projects. Ethereum uses the complete Turing language, and Ether is its own cash which is utilized at the hour of execution because it improves the way technology is used more efficiently. The Ethereum platform is used to build Altcoins that can be implemented in a complex system. Altooins can benefit from bitcoin's popularity by utilizing a similar PoW instrument. In this way, the miner (the network node in charge of doing PoW) can acquire a few coins at the cost of one. To use this strategy, Altcoins should be viable with bound together mining. It utilizes the space accessible from the Bitcoin mint exchange contribution by putting away Altcoin data [19]. The main motivation and reason for Blockchain-based implementation is transactions. Any remaining pieces are worked to guarantee that exchanges are made appropriately, buffered on a network that is only used as a manual peer-to-peer transfer of digital money and are verified and added to this SCi-B learning model. Every transaction activity is put away as contribution on the Blockchain. A few applications like public accountants, agreements, and preparing are engineers who have utilized Blockchain. Since this innovation has the potential for use past its unique reason for making installments.

IV. Result

Universities usually facilitate their students with cloud drive storage access, which usually uses Google Drive or Dropbox. However, this makes the costs required for these students much higher than usual. By using Blockchain technology, it can provide benefits in the form of a large enough storage medium at an affordable price. Compared to other file storage platforms that are still traditional, SCi-B provides the benefit of a large enough storage medium for students who have full confidence at a lower cost than usual, so that the costs required for students are not higher, even though they have a cloud drive with large enough storage [20]. Compared to the research conducted by K. KumuthaS. Jayalakshmi in 2021 [21] who said that the research only expanded information about the benefits, dangers, principles, and general rules of verification using Blockchain technology in the academic field. This research is not only based on theory but in practice there is already an application prototype

of a new learning model, namely SCi-B which has adopted the use of Blockchain technology whose results can be validated and guaranteed authenticity. The limitation in this research is that the scale is still small in the world of education, so for now the target of this research is only for students, then the time and cost in designing applications that can work fully are also still obstacles in this research, so it takes more it takes a lot of time and money to get the app to work flawlessly.

A. Execution to choose: Ethereum and Bitcoin

After believing in the theory and model to be created, it is important to select the innovations and fundamental conventions to try out this thinking, through a completely reasonable model that permits the advantages of the model to be settled upon. Currently there are three basic conventions for modeling models that are introduced quickly and capable: events used for Bitcoin, the second most unavoidable digital currency show, Ethereum, finally which allows users to store different segments that do not have to have a plan or on the other hand a similar geography as one another on the Blockchain. Since this paper does not intend to discuss the specific idea of the model, but into the usability and employability of training, an overview of the advantages and disadvantages of each, arises due to far-reaching innovative investigations, solved by the creators, introduced schematically in Table 1. Taking everything into account, it would be unreasonable to expect to use Bitcoin because of the perceived barriers of innovation connected to the most extreme numbers. Moreover, in addition to the psychological endeavors associated with the understudy and the digger on which this suggestion is based, the mining system requires computational endeavors that present major issues of adaptability and energy efficiency to the proposition [22]. Nor was it possible to take advantage of Ethereum, as it did not allow the sharp agreement that eventually emerged between the preparatory foundation and its alumni with agreed capabilities. After blocking the other two recommendations, Ethereum has all the features of being another best-of-the-line innovative choice: it allows mining that is proposed in the model and relies on meeting positions and psychologically instead of computational effort; it's efficient; it does not have a common boundary point like Bitcoin; and considering a brilliant agreement between meetings, with respect to SSL certification for those marked and lists of capacities and capabilities. In general, it is the best choice to make Alt Chain important to consider the capabilities required for this methodology [23]. The disadvantages of these innovations affect basically Cryptocurrency exchanges, because of the size of the crates and the trouble of finishing computational mining, and hence they don't restrict this recommendation. It is imperative to create explicit cash for esteem based bookkeeping, which for the present circumstance, as talked about later, would be Praise, the notable money or genuine cost for the premium taking component [24].

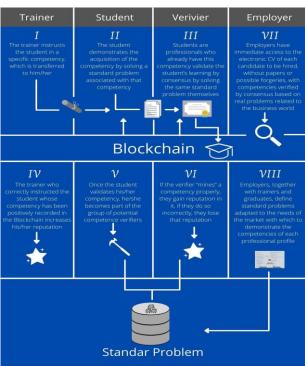


Fig. 2 The central element of the proposed model

Consistently demonstrates their suitability in the competencies to be evaluated, which inevitably affects their position. They are interested in knowing the abilities each member has in the framework to have the option of registering the workforce with their organization in a suitable way. Business just prompts the chain and doesn't characterize abilities in the current perspective (other authority establishments do) in any case, their advantage in the hypothetical shift in outlook will appear to be of great help to those who are more likely to understand the needs of the industry as far as capability [25]. As can be found in Fig. 2, the meeting related to the framework of communicating with the Blockchain as the main problem where the exchange of frameworks is stored. For typical use situations, it all starts when a mentor trains a substitute so that the person gets certain competencies transferred to that person. (Fig. 2 - stage 1). Then, students need these competencies to be perceived. With the current view of the world of education, a qualification or digital certificate is sufficient, authenticity guaranteed, and validated for certain if students gain competence on their own. With the proposed model, students must demonstrate the procurement of competencies by paying attention to the standard problems associated with these competencies (Fig. 2 - Stage 2). Standard issues, which will be talked about later, are eliminated in the documents and settled by experts in every competency. When students have tackled standard problems, the verifiers who are needed to have the skill to be assessed (there will be compromises in the chain demonstrating this), will likewise address, as a confirmation exertion, the most standard issues they have. It has been given to students by the framework and will probably not come close to the arrangements students make until they have gone through it themselves to see what results have been obtained. Indeed, this is a mining cycle in the proposed model, which is a sensible sort of mining, which consists of setting standard problems and correlating the results obtained by students and verifiers. If the examiner reaches an agreement that the "competitor" has handled the standard issue precisely, the trade will be affirmed as far as permitting understudies to procure skills (Fig. 2-step 3). As a rule, if there is consensus, this leads to several results:

- The mentor will establish his position (Fig. 2 stage 4).
- Students, in view of the information recorded on the Blockchain, for all assumptions and purposes, will be the holders of the competency studied. It concludes that the person can now, thus, evaluate these competencies in future mining actions and that the individual can be recruited by managers who need workers with the competencies surveyed (Fig. 2-stage 5).

In general, if the transaction has been confirmed they will get a position, and if not, they will lose the position (Fig. 2 - stage 6). This main drive is what drives verifiers to act quickly with regard to agreeing to the skill. Meanwhile, organizations would challenge the data to find which subjects in the structure had an interest in their enrollment size (Fig. 2 - stage 7) [26]. This business, together with mentors and graduates (holders of explicit competence), will characterize standard (of-line) problems enabling students to assess competency shields, endlessly adapting these problems to irregular working circumstances (Fig.2 - stage 8). Underlines the more on-line model association (stages 2-4 and stage 6 of Figure 2), having larger outline properties (stages 1, 5, 7 and 8 of Figure 2), to characterize the strategy proposed in the algorithmic documentation in a way (for clarity, the method recognized by the calculation of hash costs and the association between data blocks is hindered, with an emphasis on the size of the applied mining) [27].

```
Input: Chain (CH), Student (S), Teacher (T), Competency (S),
// Standard Problem (SP), Student Result (SR), Kudos involved (KI), Number of individuals in the organization with Competency S (NS).
           // Output: Consensus Result, Updated Chain (UC'), Updated Kudos in Miners, teachers and Student
               S asks to add <F,T,C,S,*,SR,KI> to UC (*refers to any potential miner "winner")
               Decline = 0
               For each miner M who mines <F,T,C,S,*,SR,KI>, provided they have competency S:
          // M solves P, giving MR as a result
10
               M mines the transaction with MR (checks if SR = MR) 4.5 If the mining is positive (SR = MR): 4.3.1 M_Recommendation=Apply; Apply++
11
          Otherwise: 4.3.1 (SR ≠ MR): M_ Recommendation=Decline;
13
          // Whereas (Apply+Decline)/NC <MINIMUM_THRESHOLD_PERCENTAGE>
14
               If Apply >= Decline:
               Result = Apply
16
           // Add <F,T,C,S,M,SR,KI> to UC, giving UC' as a result (M is the winning miner, the first to mine correctly)
17
               F_Kudos = F_Kudos + KI
T_Kudos = T_Kudos + KI
19
               M_Kudos = M_Kudos + KI
                   Otherwise (Apply < Decline):
20
                        Result = Decline
                   S_Kudos = S_Kudos - KI
T_Kudos = T_Kudos - KI
22
23
          //For each M' miner who has mined (M' \neq M, non-winning miner)
          If M'_Recommendation = Result: 7.1.1 M'_Kudos = M'_Kudos + K/NC
Otherwise: 7.1.1 M'_Kudos = M'_Kudos - KI
```

Fig 3. Verification of competence

As can be seen in Figure 3 which is the flow of the algorithm:

- (Step 1) shows the student in question presents himself as having skills, after determining
 what the student is capable of mastering, certain problems will be randomly selected by the
 system for the referred ability category.
- (Step 4) shows that in order to be able to do this, the assessors will solve the same standard problem and examine the results of the students' performance.
- (Step 5) indicates the need to note that a quorum is required for the work to be effective.
- (Step 6) If the student, by consensus agreement, has the skills, exchange confirmed, then credits will be added to him as well as to the coach. Otherwise, the positions of students and coaches are reduced.
- (Step 7) For the consensus that does not win, if the job is done correctly then the position will increase. If they don't he job as expected, their stats decrease.

Based on approximate findings, the student concerned presents himself as having the ability, having handled a specific issue which is randomly chosen by the system from among them set for the competency being referred [28]. To do this, the diggers tackle similar standard issues (get an adequate number of tractors for each kind of issue in a tough work framework) and check the understudy. It ought to be noticed that most of the burrowing base is needed for mining to be solid. If the understudy, with the tractor's assent, has skill, the trade is affirmed and credit is added to him, to the educator and to the "triumphant" digger [29]. Other, the position of understudies and instructors is decreased. For the non-winning diggers, in the event that they have mined accurately their position increments, yet not however much the triumphant tractor has. On the off chance that they don't mine true to form, their status diminishes.

Without a doubt, the last phase of the above computation happens when it is demonstrated that an understudy has prevailing with regards to having a competency. At that time, exchanges are confirmed and become essential to the chain of all times (note that unchanging nature is one of the fundamental properties of any trade), and exchanges are stored in individual perpetual storage devices. To illustrate which specific information is stored when the exchange is confirmed, Fig. Fig. 3 shows the interchange construction in the proposed framework with possible substance tests for each field. As can be found from Figure 3, the container that will be put away on the Blockchain is just 128 bytes in size, and has fields attached to it:

Version	2104200
Previous block	17875n17a18ef1f7e255akl297599b69
hash	320rnbb81907c8070300000000000000
Merkle root	8º97295a2747a4k1a0b3048df3990344b0r19ta4 b2m92b7a10c5e6badc161887
Timestamp	391c1042
Bits	891g0216
Nonce	43557823
Transaction counter	54
Id_student	000000D9
Id_student	00000A6
ld_problem	000002B6
Id_competency	0000902F
ld_miner	0006013U
Result	AB33069F
Kudos	0000001
Free_space	000000000000000000000000000000000000000

Fig 4. Transaction structure in the proposed system

- Students, preparation of the establishment, standard problems resolved, competencies and diggers who agree on competencies. 8 is used for each one, that is, 40 bytes at a time.
- The results were obtained (by student and excavator, apart from the contrast that they were equal) for the standard problem. For this reason, the IEEE 754 dual accuracy standard is used, utilizing 8 bytes.
- Exchange-related credit measure. To date, models with individual number quality have been used, expanding or diminishing one unit of this leader coin. In the event that later on it is imperative to change these characteristics, for instance the intricacy of the standard issue, or the quantity of graduates with a specific competency, this field will roll out that improvement conceivable. The IEEE 754 twofold accuracy standard is utilized indeed, utilizing 8 bytes.
- The free space can be obtained for other possible uses or future projections, adding up to 74 bytes for future outcomes, which will yield 168 bytes.

At last, it is imperative to take note of that, in this first version of the proposed model, it has been chosen to use, through testing, standard issues put away in an external XML database [30]. XML has been picked as the essential setting for issues since it works on the association and relationship of

issues (looking for their homogenization), permits direct exchanging over the web and offers huge adaptability as to altering issue acknowledgment to experiences needed by patterns, devices, affiliation ascribes and so on.

B. Proposal prototype and validation

With the computations, frameworks, and innovations described in the previous segment, a P2P framework that relies on HTML5, MySQL, and JavaScript was grown, without any problem, suitable to offer an instinctive interface for replacement jobs (see Figure 4) [31]. This model, in relation to Ethereum, has been made for the execution of the philosophy presented in the past fragment, which is required to respond to the accompanying working theories:

- RQ1: this model makes it conceivable to see the preparatory associations associated with showing students in the comparative master's abilities, viewing companies with planning faux pas.
- RQ2: This model allows for assisting student data, recognizing data-deficient students, as a fast and clear wellspring of data for chiefs.
- RQ3: the model makes it conceivable to reuse supervisory and uncoordinated training to convert it to a business situation.

Fig. 5 Student interface based on an adapted Ethereum smart contract

A total of 4 problem types were used: two according to primary fitness, and two according to subsequent abilities. The two problems identified with the first are: (1) network organization issues at the IP level: IP address assignment, hoods, referrer tables and setting Tear or OSPF within the CISCO framework; and (2) organizational issues at the TCP level (TCP / UDP convention decisions and definitions of start / end parts, windows and instruments). Two problems identified with the second are: (1) creation, expansion and cancellation of tables in the social information base through SQL investigations; and (2) combining multi-table information queries with multi-condition channels through SOL queries. Problems of this kind, in conjunction with the entrance tests these organizations use in measuring their decisions, cause a cluster of more than 100 different problems, given the variation in self-contained boundaries that characterize the problem. These issues are then tackled into a "standard issue" information base. Prior to the actual approval, 100 excavators were illustrated, through an integrated evaluation managed by the creators and delegates of each preparatory establishment, that they had the option of dealing with problems from among them which were eliminated without problems, as this created a completely practical framework for the underlying stage, this investigation. Directly pulling these excavators by spurting them through their considerations in setting confidence in their capabilities, earning them a Trial Award that will be considered in the execution of the final model in the short to medium term. After half a year of activity, students acquire the capacities appointed by every educator. As demonstrated in the investigation, 100 students were considered to have passed every one of their assessments, and were endorsed by mining,

blockchain storing, and evaluation of the situation of each association included. The outcomes of the test are summed up in the going with sections [32].

- Rq1: Of all the 80 students who acquired a special ability through one of the preparatory organizations, only 58 knew how to approve the ability by dealing with standard problems governed by the utilization elements expressly mined with the approval of the examiners. 60 of these abilities are remembered for Blockchain, leaving different students (40) outside the approved skill record (they ought to have the potential to fail by the intended preparation organization). A point-by-point study completed by a board of specialists from the preparation and utilization section confirmed that the foundation of preparation in the fourth position did not adequately prepare students, even though it explicitly indicated that they would secure the abilities that, based on their strategy, demonstrated to staff. and substance, they can't communicate. For other organizations, the board pretty much agrees that the companies are comparative in terms of preparation, perhaps presenting the first-placed foundation as the most respected [33].
- Rq2: Table 1. describes the results of a survey conducted by in-person interviews, access tests, and exams completed with each of the 100 participants by a specialist board of user organizations. In this study, mining side effects were agreed to be 97.82%, based on figure 6 clearly recognizing that 20% of people do not have the essential ability to manage daily tasks intrinsic to the considered expert profile [34]. Of the 80 students who had the option of agreeing on their abilities, 2 were ultimately unsuitable for the job. This case was considered, through student-monitored reviews, to reveal that students imitated other students during the standard problem-solving process. This reality, which is very important, is discussed later in the future. The result is that there are four different institutions where in each institution only 25 students are selected, we see that the mining framework has obtained 97.82% accuracy, that there are no fakes.

Relative final No. standard No. No. students reputation competencies Institution problems (Kudos)/ranking passed answered mined position Open 25 25 24 24 K/2nd University MOOC cycle 25 23 22 K/3rd Technological 25 25 25 K/1st academy 25 2 2 K/4th Online tutorial 25

Table 1. Data On Different Institutions

• Rq3: To accomplish persuading results for this functioning hypothesis will require an immediate and flowing impression of the utilization of this model in the field of additional schooling in innumerable establishments, to check its recognition and weight in the planning of future controlled education plans [35]. In order to achieve an uncertain subjective outcome that offers a response to the inquiry, contextual inquiry is proposed, bearing in mind that meetings are chaired using the Delphi strategy with a board of instructors directly related to the implementation of the model. A total of 12 instructors took part in an exam-related preparation organization, 2 gave classes in the College, 3 gave classes in the MOOC cycle, 5 at the Mechanic Foundation, and 2 in online instructional exercises. First of all, not all of them are given the results achieved in the mining cycle of their students, and the weighting of the company they are in, until the meeting is over [36].

At the main board meeting, they are asked:

- Regardless of whether they accept this model is ideal for adjusting further schooling to business real factors. The results, in a closed yes / no study, are shown in Fig. 6. There is no measurable relationship that can be delegated between reactions and the foundation of preparation on which respondents are placed. Only one mentor, from the mechanical institute studied, disagreed, considering that, even though it is a model with extraordinary potential and demonstrated finesse, there is a definite preparatory point of see that may vary from business reality since it is basic. associations (in this current respondent's appraisal) that should give explicit particulars to set themselves up to their delegates in setting up their own HR programs.
- On the off chance that over 20% of your understudy's neglect to approve the skills they have passed with your educating, would you think about pulling together your technique and substance?

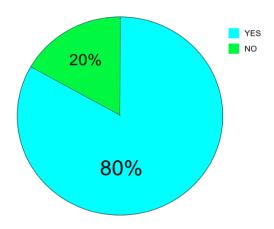


Fig. 6 Responses of the panel

After the first discussion, the board was faced with a second exploratory conference to find the explanation behind each educator's answer. At the College, 2 educators fully agree with this statement. Due to the MOOC cycle, 2 teachers in full agreement and 1 didn't show this worth on the grounds that the individual didn't think of it as important whether the preparation methodology ought to be changed, however just the substance [37]. Others expressed that they were distinctive in light of the fact that they felt that their non-formal instructing ought not rely upon the help of their understudies' data and that this variety would just influence the authority controlled establishments. Nonetheless, this articulation obviously discredits the distribution of informative preparing and its expenses, which can be censured if graduated class don't procure ensured capability [38]. In the summation, it ought to be noticed that of the 12 outlines, 7 (in every practical sense, 80%) really consented to change their schooling if understudies introduced an ability issue that was uncovered as a result of the assurance part of the arrangement proposed here, and 10 (more than 82 %) will consider, paying little mind to, changing the materials or systems utilized. What's more, over 93% accept that this model is ideal for adjusting further schooling to business real factors [39].

Research variables by presenting a Likert scale are also the results of this study. By using the Likert scale, the variable to be achieved can be used as a benchmark to be able to find an idea or question that is intended for the respondents. The following are the research instruments:

No Variable Dimension

1 System Quality Validity

Accurate

Consistency

Table 2. Research Instrument Grid

2 Efficiency Validity
Accurate
Consistency

In this study, in order to accurately calculate the reliability of the instrument, the authors used SPSS with Cronbach's Alpha. This test will be said to be reliable provided that the Cronbach Alpha value is > 0.6. By using the Slovin's Formula, the calculation begins with a sample of 180 people. The next step is to distribute a questionnaire of 25 questions to 180 respondents via email.

Table 3. Validity Performance

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Less fulfilled	7	3.9	3.9	3.9
	Very fulfilled	22	12.2	12.2	16.1
	Fulfilled	55	30.6	30.6	46.7
	Exceptiona lly Fulfilled	96	53.3	53.3	100.0
	Total	180.0	100.0	100.0	

Table 4. Accurate Performance

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Less fulfilled	6	3.3	3.3	3.3
	Very fulfilled	13	7.2	7.2	10.5
	Fulfilled	25	13.9	13.9	24.4
	Exceptiona lly Fulfilled	136	75.6	75.6	100.0
	Total	180.0	100.0	100.0	

Table 5. Consistency Performance

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Less Fulfilled	4	2.2	2.2	2.2
	Quite Fulfilled	16	8.9	8.9	11.1
	Fulfilled	36	20.0	20.0	31.1
	Exceptional ly Fulfilled	124	68.9	68.9	100.0
	Total	180.0	100.0	100.0	

After conducting a questionnaire on 180 respondents and the author has received answers from the

questionnaire that has been given, a recount is needed to ensure the performance of 2 variables, 6 indicators. It takes the average results from the statistics in Table 2, Table 3, Table 4 which contains the results of the performance of validity, accurate, and consistency. The results of these statistics will review the evaluation of the prototype that has been created.

Table 6. Reliability Static

Cronbach's Alpha	N of Items
.973	25

Table 7. Case Processing Summary

		N	%
Cases	Valid	180	100.0
	Excluded*	0	0
	Total	180	100.0

Based on 25 questions and statements from 180 respondents, the calculation was carried out using the Cronbach Alpha formula, thus producing a value of .973. Based on these data, it can prove that the existence of the prototype brings many benefits for students and provides efficiency for academics in distributing learning models with the SCi-B framework.

V. Discussion

Another innovation that is regularly the subject of public conversation, Blockchain, can really reform the learning interaction in the time of the modern upset. With exploration the Student-Centered iLearning Blockchain (SCi-B) can take care of issues that pay attention on instructive applications, where it very well may be fruitful on the off chance that it features the highlights and benefits of blockchain innovation that records transactions in a verified and permanent way. Application of blockchain applications to provide space and get security to support collaborative learning such as the Student-Centered iLearning Blockchain (SCi-B). The use of blockchain technology to accredit and improve the quality of education is another important area for future research. The application of blockchain technology to education is still in its early stages. Therefore, it is necessary to analyze the latest blockchain research in the field of education and now blockchain is still not exploited because the area of education in which blockchain technology is applied is still limited.

VI. Conclusion

This paper presents a model of confidence in open and omnipresent proceeding with instruction, considering Blockchain advancement, which affirms the procurement of capacities by understudies who are set up in different fields of industry. The proposed model hinges on the agreement of specialists that is essential to the actual framework. This methodology takes advantage of the benefits of the hidden innovation itself and, in addition, addresses fundamentally the extraordinary developments in education, as it takes into account the strong confirmation of skills acquisition by students, and moreover, ensures that they are prepared according to circumstances. real jobs and today's industry needs. In addition, it allows the company preparation estimates related to the cycle to be surveyed in a sensible, programmatic, and decentralized way. This empowers these elements to have fast and attractive components to self-evaluate their instructions and adapt to the changing work industry. SCi-B also helps in easing the cycle of recruiting and evaluating competitors for businesses, which also don't have to worry about fraudulent records being destroyed. Finally, students will appreciate an overall, influential, effective computerized educational program in validating industry-to-community approved data. Models have emerged as fully useful implemented models, surveyed in their original scope, and have obtained positive results indicating unlimited benefits. from propositions

for students, preparation companies, specialists, and managers. One of the main qualities of the proposed model is its high scope of relevance to any situation where there is an instructive basis that trains students in securing skills in verification for the work industry. This paper also opens the opportunity to continue and investigate the educational capabilities of Blockchain innovation in various parts of the field of education. As well as the thoughts that are in this note to various fields of use such as various scientific conclusions, monetary valuation and even business information for executives

Acknowledgment

Thank you to Raharja University, especially Alphabet Incubator for supporting and supporting this research with excellent results.

References

- [1] Q. Liu, Q. Guan, X. Yang, H. Zhu, G. Green, and S. Yin, "Education-industry cooperative system based on blockchain," in 2018 1st IEEE international conference on hot information-centric networking (HotICN), 2018, pp. 207–211.
- [2] H. Sun, X. Wang, and X. Wang, "Application of Blockchain Technology in Online Education.," *International Journal of Emerging Technologies in Learning*, vol. 13, no. 10, 2018.
- [3] N. Gaur, "Blockchain challenges in adoption," *Managerial Finance*, vol. 46, no. 6, pp. 849–858, Jan. 2020, doi: 10.1108/MF-07-2019-0328.
- [4] T. Alam and M. Benaida, "Blockchain and Internet of Things in Higher Education," *Tanweer Alam, Mohamed Benaida.*" *Blockchain and Internet of Things in Higher Education.*" *Universal Journal of Educational Research*, vol. 8, pp. 2164–2174, 2020.
- [5] S. Y. Lim *et al.*, "Blockchain technology the identity management and authentication service disruptor: A survey," *International Journal on Advanced Science, Engineering and Information Technology*, vol. 8, no. 4–2, pp. 1735–1745, 2018, doi: 10.18517/ijaseit.8.4-2.6838.
- [6] Q. Aini, T. Hariguna, P. O. H. Putra, and U. Rahardja, "Understanding how gamification influences behaviour in education," *International Journal of Advanced Trends in Computer Science and Engineering*, vol. 8, no. 1.5 Special Issue, pp. 269–274, 2019, doi: 10.30534/ijatcse/2019/4781.52019.
- [7] V. Bralić, H. Stančić, and M. Stengård, "A blockchain approach to digital archiving: digital signature certification chain preservation," *Records Management Journal*, vol. 30, no. 3, pp. 345–362, 2020, doi: 10.1108/RMJ-08-2019-0043.
- [8] L. M. Palma, M. A. G. Vigil, F. L. Pereira, and J. E. Martina, "Blockchain and smart contracts for higher education registry in Brazil," *International Journal of Network Management*, vol. 29, no. 3, p. e2061, 2019.
- [9] M. P. Jaramillo and N. Piedra, "A blockchain model proposal for the decentralized management of academic credentials in Ecuadorian universities," in 2020 9th International Conference On Software Process Improvement (CIMPS), 2020, pp. 94–102. doi: 10.1109/CIMPS52057.2020.9390104.
- [10] B. Rajkumar and G. Narsimha, "Trust Based Certificate Revocation for Secure Routing in MANET," *Procedia Computer Science*, vol. 92, pp. 431–441, 2016, doi: https://doi.org/10.1016/j.procs.2016.07.334.
- [11] N. K. Dumpeti and R. Kavuri, "A framework to manage smart educational certificates and thwart forgery on a permissioned blockchain," *Materials Today: Proceedings*, 2021, doi: https://doi.org/10.1016/j.matpr.2021.01.740.
- [12] B. Duan, Y. Zhong, and D. Liu, "Education application of blockchain technology: Learning outcome and meta-diploma," in 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), 2017, pp. 814–817.

- [13] N. Singh and M. Vardhan, "Computing Optimal Block Size for Blockchain based Applications with Contradictory Objectives," *Procedia Computer Science*, vol. 171, pp. 1389–1398, 2020, doi: https://doi.org/10.1016/j.procs.2020.04.149.
- [14] M. Towhidi, J. Desrosiers, and F. Soumis, "The positive edge criterion within COIN-OR's CLP," *Computers & Operations Research*, vol. 49, pp. 41–46, 2014, doi: https://doi.org/10.1016/j.cor.2014.03.020.
- [15] G. Gromovs and K. Lammi, "Blockchain and internet of things require innovative approach to logistics education," *Transport Problems*, vol. 12, 2017.
- [16] D. Lizcano, J. A. Lara, B. White, and S. Aljawarneh, "Blockchain-based approach to create a model of trust in open and ubiquitous higher education," *Journal of Computing in Higher Education*, vol. 32, no. 1, pp. 109–134, 2020.
- [17] I. Faridah, F. R. Sari, T. Wahyuningsih, F. P. Oganda, and U. Rahardja, "Effect Digital Learning on Student Motivation during Covid-19," in 2020 8th International Conference on Cyber and IT Service Management (CITSM), 2020, pp. 1–5. doi: 10.1109/CITSM50537.2020.9268843.
- [18] S. Jiang, Y. Li, S. Wang, and L. Zhao, "Blockchain competition: The tradeoff between platform stability and efficiency," *European Journal of Operational Research*, 2021, doi: https://doi.org/10.1016/j.ejor.2021.05.031.
- [19] R. M. H. Thamrin, E. P. Harahap, A. Khoirunisa, A. Faturahman, and K. Zelina, "Blockchain-based Land Certificate Management in Indonesia," *ADI Journal on Recent Innovation (AJRI)*, vol. 2, no. 2, pp. 232–252, 2021.
- [20] U. Rahardja, A. N. Hidayanto, T. Hariguna, and Q. Aini, "Design Framework on Tertiary Education System in Indonesia Using Blockchain Technology," 2019 7th International Conference on Cyber and IT Service Management, CITSM 2019, pp. 5–8, 2019, doi: 10.1109/CITSM47753.2019.8965380.
- [21] K. Kumutha and S. Jayalakshmi, "Blockchain Technology and Academic Certificate Authenticity—A Review BT Expert Clouds and Applications," 2022, pp. 321–334.
- [22] Q. Aini, M. Budiarto, P. O. H. Putra, and N. P. L. Santoso, "Gamification-based The Kampus Merdeka Learning in 4.0 era," *IJCCS (Indonesian Journal of Computing and Cybernetics Systems)*, vol. 15, no. 1, pp. 31–42, 2021.
- [23] B. Putz and G. Pernul, "Detecting Blockchain Security Threats," in 2020 IEEE International Conference on Blockchain (Blockchain), 2020, pp. 313–320. doi: 10.1109/Blockchain50366.2020.00046.
- [24] U. Rahardja, Q. Aini, M. D. A. Ngadi, M. Hardini, and F. P. Oganda, "The Blockchain Manifesto," in 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS), 2020, pp. 1–5.
- [25] S. K. Kotamraju, P. G. Arepalli, L. N. Vejendla, and S. S. Kanumalli, "Implementation patterns of secured internet of things environment using advanced blockchain technologies," *Materials Today: Proceedings*, 2021, doi: https://doi.org/10.1016/j.matpr.2020.11.492.
- [26] A. Prahara, S. A. Akbar, and A. Azhari, "Texton Based Segmentation for Road Defect Detection from Aerial Imagery," *International Journal of Artificial Intelligence Research*, vol. 4, no. 2, p. 107, 2021, doi: 10.29099/ijair.v4i2.179.
- [27] D. Cahyadi, A. Faturahman, H. Haryani, and E. Dolan, "BCS: Blockchain Smart Curriculum System for Verification Student Accreditation," *International Journal of Cyber and IT Service Management*, vol. 1, no. 1, pp. 65–83, 2021.
- [28] T. Apriliana, T. Rediyanto, V. Indriyani, and A. A. G. S. Utama, "Accounting Education Based on Finance Record Training As the Way To Increase Revenue From Smes in Tamansari Village, Licin District, Banyuwangi, Indonesia," *e-Proceeding of the Social Sciences Research ICSSR 2016 (e-ISBN*

- 978-967-0792-09-5). 18 19 July 2016, Kuala Lumpur, MALAYSIA. Organized by http://worldconferences.net/home, vol. 2, no. 1, pp. 192–196, 2016.
- [29] I. Amsyar, E. Christopher, A. Dithi, A. N. Khan, and S. Maulana, "The Challenge of Cryptocurrency in the Era of the Digital Revolution: A Review of Systematic Literature," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 2, no. 2, pp. 153–159, 2020.
- [30] H. Hosseinian, H. Shahinzadeh, G. B. Gharehpetian, Z. Azani, and M. Shaneh, "Blockchain outlook for deployment of IoT in distribution networks and smart homes," *International Journal of Electrical and Computer Engineering*, vol. 10, no. 3, pp. 2787–2796, 2020.
- [31] X. Xiao, Z. Yu, K. Xie, S. Guo, A. Xiong, and Y. Yan, "A Multi-blockchain Architecture Supporting Cross-Blockchain Communication BT Artificial Intelligence and Security," 2020, pp. 592–603.
- [32] S. Kumaresh, "Academic Blockchain: An Application of Blockchain Technology in Education System BT Data Management, Analytics and Innovation," 2021, pp. 435–448.
- [33] P. A. Sunarya, N. Lutfiani, N. P. L. Santoso, and R. A. Toyibah, "The Importance of Technology to the View of the Qur'an for Studying Natural Sciences," *Aptisi Transactions on Technopreneurship* (ATT), vol. 3, no. 1, pp. 58–67, 2021.
- [34] H. Kenta, Y. Shino, D. Immaniar, E. P. Harahap, and A. D. A. R. Ahmad, "Gamification Based Blockchain Tournaments Between Miners," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 3, no. 1, pp. 91–114, 2021.
- [35] A. Pambudi, "Legality On Digital Document Using Blockchain Technology: An Exhaustive Study".
- [36] A. Sadu, A. Jindal, G. Lipari, F. Ponci, and A. Monti, "Resilient Design of Distribution Grid Automation System against cyber-physical attacks using Blockchain and Smart Contract," *Blockchain: Research and Applications*, p. 100010, 2021, doi: https://doi.org/10.1016/j.bcra.2021.100010.
- [37] M. Antwi, A. Adnane, F. Ahmad, R. Hussain, M. Habib ur Rehman, and C. A. Kerrache, "The Case of HyperLedger Fabric as a Blockchain Solution for Healthcare Applications," *Blockchain: Research and Applications*, p. 100012, 2021, doi: https://doi.org/10.1016/j.bcra.2021.100012.
- [38] F. Asuncion *et al.*, "Connecting Supplier and DoD Blockchains for Transparent Part Tracking," *Blockchain: Research and Applications*, p. 100017, 2021, doi: https://doi.org/10.1016/j.bcra.2021.100017.
- [39] H. P. Wouda and R. Opdenakker, "Blockchain technology in commercial real estate transactions," *Journal of Property Investment and Finance*, vol. 37, no. 6, pp. 570–579, 2019, doi: 10.1108/JPIF-06-2019-0085.