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I. Introduction 

Madrasah Tsanawiyah Plus Darul Ulum (MTs Plus DU), is an Islamic Boarding School located 
in the Complex of Darul Ulum, Sub-district of Peterongan, District of Jombang, Province of East Java, 
with superior Tahfiz program. It selects prospective Holy Quran Memorizers for new students to make 
the Program successful. 

Current problem facing MTs Plus DU is the scarce of human resources who act as examiners in 
the selection program of prospective Holy Quran Memorizers. Every year, 259 students are examined 
by only four testers using four criteria consisting of ability to read, write, and readiness to memorize 
the Holy Quran. The assessment duration given by MTs Plus DU is a week. Every year, 60 students 
are admitted into the Tahfiz Program, a fact which indicates examiners give different assessment 
results comprising of numeric, and nominal questions. Example the Holy Quran memorization 
examination indicated that Examiner 1 gave articles to assess students memory, the second was on its 
various types, while the third and fourth wrote list of articles to memorize, therefore their perceptions 
were different as illustrated in Table 1, Table 2, Table 3 and Table 4. In general, examiners also serve 
as teachers, who carry out administrative activities. 

Many researches are associated with Tahfiz Program adopting information technology (IT), 
however, these studies only make applications to evaluate Holy Quran memorizers, rapport and  [1], 
monitoring application [2] [3], cluster application used k-Means for selection of prospective MTQ 
competition participants  [4]. There is no proposal of previous studies in solving problems associated 
with this case.  

This study proposed the application of the classification method from data mining to predict 
prospective Tahfiz Program participants, irrespective of their educational qualifications. Therefore,  
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Table 1.  Examples of assessment results by Examiner 1 

No 

Assessment Indicator 

Ability to read the 

Qur'an 

Ability to write the 

Qur'an 

Ability to memorize 

the Qur'an 

Al-Qur'an letters that 

have been memorized 

1 70 70 80 5 

2 70 80 50 8 

3 60 65 50 8 

4 70 80 75 9 

Table 2.  Examples of assessment results by Examiner 2 

No 

Assessment Indicator 

Ability to read the 

Qur'an 

Ability to write the 

Qur'an 

Ability to memorize 

the Qur'an 

Al-Qur'an letters that 

have been memorized 

1 60 60 ✓ Short letter 

2 75 65 × Short letter 

3 75 75 ✓ Short letter 

4 75 70 ✓ An-Naba – An-Nazi’at 

Table 3.  Examples of assessment results by Examiner 3 

No 

Assessment Indicator 

Ability to read the 

Qur'an 

Ability to write the 

Qur'an 

Ability to memorize 

the Qur'an 

Al-Qur'an letters that 

have been memorized 

1 90 80 Yes An-Nas – Ad-Duha 

2 60 60 Yes An-Nas & Al-Ikhlas 

3 85 60 Yes An-Nas – Al-Ikhlas 

4 90 80 Yes Al-Ma’un 

Table 4.  Examples of assessment results by Examiner 4 

No 

Assessment Indicator 

Ability to read the 

Qur'an 

Ability to write the 

Qur'an 

Ability to memorize 

the Qur'an 

Al-Qur'an letters that 

have been memorized 

1 65 60 Yes ََالْمَاعُون 

2 78 60 Yes العصر 

3 78 60 Yes العصر 

4 78 60 Yes العصر 

final decisions made by examiners in a week could be replaced by a system within a shorter timeframe. 
There is no classification technique applied to predicting graduation of prospective Holy Quran 
memorizers, however, the classification method was used to determine students with the potential to 
discontinue their education with difference in the right attributes to utilize [5]. The classification 
algorithm used to predict this, may not be indifferent, however data characteristics must first be 
considered. In this study, its attributes are Class Imbalance, because the ratio between students who 
would be admitted (0.23%) and those not admitted (0.77%) was proportional. It is considered balance 
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if the ratio was 0.35%:0.65% [5]. Nevertheless, not all algorithms are consistent to solve problem of 
Class Imbalance, for example, algorithm of Decision Tree (DT) family, is different from k-Nearest 
Neighbor (kNN) which has better performance [6]. Some advantages indicate that the computation is 
low, simple, easy to learn, resistant to noise, and effective if training data are large [7]. In this study, 
the kNN application was used to select web-based Tahfiz Program students. The aim was to 
recommend examiners in making decision, thereby minimizing time taken. 

 

Fig. 1. Left is imbalances class, center and right is balances class  

II. Class Imbalance 

Class Imbalance is also called imbalance class or imbalance data [5], as illustrated in Figure 1. 

Thammasiri et.al performed studies associated with it in order to predict students potential to 

discontinue their education during their first academic year [5]. Class distribution between those who 

continued their education and those who discontinued it had the following ratio: 21.3%:78.7%. It is 

considered balance if it has the following ratio 35%:65% [5]. A total data of 21,654 students with 34 

attributes were obtained from 2005 to 2011 . The proposed algorithms are artificial Neural Network 

(ANN), support Vector Machines (SVM), Decision Tree (DT), and Logistic Regression (LR). The 

problem of class imbalance is solved by applying sampling technique consisting of Random under-

sampling (RUS), Random over-sampling (ROS), and Synthetic minority over-sampling technique 

(SMOTE). Performance evaluation is assessed by the following nine measurements namely 

accuracy, sensitivity, specificity, precision+, FP-Rate, F-measure, CC, and GMEAN. Results of 

studies by Thammasiri et.al [5] indicate that SVM combined with SMOTE has best performance 

compared with other algorithm and data collection techniques. 

Brown and Mues [6] conducted other studies associated with class imbalance in a financial 

institution having some services, such as, money loan. Ability to pay and repay for services 

determines the life of an organization with respect to money loan service, so that, selection of 

prospective debtors must be carefully conducted to avoid inconsistencies associated with decision-

making. One proper way to receive loan is that it should not be rejected, and vice versa. Manual 

decision-making may be inconsistent, due to the numerous numbers of factors. Data mining plays a 

role in decision-making, due to the use of loan history whether debtor is good or bad with ratio of 

70%:30%, using various characteristics. Brown and Mues [6] studied algorithm performance for 

class imbalance problem. The data [6] used were collected from UCI Machine Learning Repository. 

The proposed algorithms were Logistic Regression, Linear and Quadratic Discriminant Analysis, 

Neural Networks (Multi-layer perception), Least Square Support Vector Machines (LS-SVM), C4.5. 

Decision Trees, k-AND (memory based reasoning), Random Forests, and Gradient Boosting. 

Classification algorithm performance was evaluated using average rank (AR) and Area Under Curve 

(AUC). AR is found good if its value is low, and inversely proportional to AUC [6]. Results of study 

by Brown and Mues [6] are Random Forests and Gradient Boosting having best criteria for class 

imbalance problem, and inversely proportional to Decision Trees and Quadratic Discriminant 

Analysis (QDA). Meanwhile, kNN and ANN have sufficient good performance. 
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III. Method 

Figure 2 shows the proposed method, consisting of raw data collection, preprocessing, kNN 
algorithm determination, 10-fold cross validation, and evaluation model such as accuracy, precision, 
recall, and AUC. 

 

Fig. 2. The proposed method  

A. Raw Data Collection 

Raw data were collected from the 2018 MTs Plus DU manual assessment sheet of Jombang, such 
as, assessment of prospective hafiz selection in tahfiz program. 

B. Data Preprocessing 

 

Fig. 3. kNN algorithm flowchart  

This consisted of 270 assessments of students subjected to selection, though they experienced 

redundancy, therefore this study removed duplicate data, resulting to 259 students. The data 

comprises of the following four assessment criteria namely ability to read, write, memorize and 

readiness to take tahfiz program. The four predetermined attributes are based on the school policies. 

This result is in line with the outcome of the research [8] which stated the main determinant factor 

for the success of memorizing Al-Qur'an or hafiz as the internal factor made up of motivation and 

interest. This is shown in their readiness in memorizing Al-Qur’an. However, the three other criteria 

are based on one's ability to apply the method of memorization and everyone has the advantages and 

disadvantages in applying it. The Tikorul Mahfudz is a memorization method very suitable for 

someone with weak memory. Aside this, the Isatima'ul Mahfudz method could also be applied. It 

involves listening to the recitation of Al-Qur’an through tapes or from other people. The method is 

suitable for people with physical limitations such as blindness [9]. Also, there is another method 

suitable for people with strong memories. This is known as Kitabul Mahfudz [9] and it involves 

rewriting verses from Al-Qur’an. Furthermore, reading skills are needed such that the memorizer or 
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hafiz is able to memorize as well as read the Qur'an. Therefore, memorization by reading in advance 

always give good results during recitation. The use of data with only 4 attributes has also been carried 

out by other researchers, including the use of Iris data provided by the UCI Machine Learning. 

Memorization criteria assessed by examiners are different, for instance, Examiner A gave numeric 

values to memorization, while B gave nominal value. The problem of the different assessments was 

solved by making them similar (uniformity) in accordance with the standard specified by MTs Plus 

DU of Jombang. Assessment of current readiness to memorize is nominal “yes” and “no”. In numeric, 

the values are converted into binary numbers 1 and 0, where 1 is “yes” and 0 is “no”, furthermore, 

the calculation of kNN algorithm would use Euclidean distance, which is only capable of handling 

such data. 

C. kNN Classification Algorithm 

kNN algorithm has the following strengths [7]: 

1. simple calculation; 

2. low computation; 

3. easy to learn; 

4. resistant to noise; 

5. Effective with large training data.  
kNN is also found to perform better than other algorithms such as Decision Trees and QDA families 
[6].  

Figure 3 shows kNN algorithm flowchart using the following steps: 

1. The minimal value of k is 1 and its maximal value is the total training data-1; including its 

training and testing pattern as well as its, training, and testing data target.  

2. Normalizing all training data and testing data patterns. The aim is to make overall value 

interval of pattern own same interval, between 0 and 1, due to the different value interval 

between 0 – 1 for readiness value, but there is 0–100 interval for the three remaining 

assessments. Normalization calculation used was min-max method as shown in equation (1) 

[8],  

minmax

min

datadata

datadata
ionNormalizat x

−

−
=                  (1) 

Where: 

datax is data in which calculation of normalization is based on column of data, 

datamin is least data in same column as data in which normalization will be calculated; and 

datamax is largest data in same column as data in which normalization will be calculated. 

3. Calculating Euclidean distance symbolized as dEuclidean(x,y). Equation (2) shows calculation 

of Euclidean distance [10], 

( ) ( ) −=
i iiEuclidean yxyxd

2
,                    (2) 

Where: 

i = the number of data, x = testing data, and y = training data. 

4. Voting from least Euclidean distance included k ranking. 

5. Determining classification results based on majority voice.  

D. Validation Model 

Validation model used was 10-fold cross validation, which means that all data would be divided 
into ten parts, with each used to train and test it. Table 5 shows illustration of 10-fold cross validation 
[11], where the dark areas are testing data, and the white areas training data.  
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E. Evaluation Model 

Evaluation models used in this study to understand kNN performance in class imbalance problem 
were accuracy, precision, recall, and AUC. However, accuracy is the only inadequate amongst them 
due to the fact that it does not mean high precision and recall, while AUC is useful to understand 
whether classification algorithm is good or not. This evaluation calculation used confusion matrix 
consisting of True Positive (TP), False Matrix (FP), True Negative (TN) and False Negative (FN). FP 
value is negative (N), but it is misclassified as positive (P). Results of FN actually belongs to P which 
can be formulated as P = FN + TP, but, when misclassifying, instance will be N, which can be 
mathematically expressed as N = FP + TN. Confusion matrix is useful to calculate accuracy, precision, 
recall, and AUC.  

Table 5.  Stratified 10-fold cross validation [11] 

n-validation Partition of dataset 

1           

2           

3           

4           

5           

6           

7           

8           

9           

10           

IV. Results and Discussion 

The trial is conducted up to 18 times due to the weakness of the k-NN which is biased to the 
parameter k value. It is necessary to carry out many trials in order to obtain the most optimal k value. 
Therefore in this study, the k-test was conducted 6 times each from the random sampling method 
consisting of Linear, Shuffled and Stratified. The determination of random k values from the smallest 
k = 1 to the largest k = 200, as shown in Table 6, gives k = 10 as the optimal value for the balance data 
between training and test data (Shuffled and Stratified). However, for imbalance data, the optimal k 
value is ≥ 100. Asides the value of k, k-NN is strongly influenced by the balance class distribution 
between the training and test data. It is seen in Table 6 that the Stratified sampling representing the 
balance class distribution has the best value compared with the imbalance by linear sampling. 

It could be proven in this study that despite the datasets having the imbalanced class distribution 
characteristics, the classification of k-NN was successful. This is as a result of the same value existing 
between the training and percentage test data of each class, upon the application of both Shuffled and 
Stratified sampling methods. However, the Linear sampling method produces poor results for the 
different percentage of each class between the training and test data. The k-NN has proven to be good 
with an accuracy > 84%, precision> 85%, recall> 94%, and AUC> 0.78.  

Also, the k-NN is not only proven to be a simple algorithm in terms of calculation and application, 
but also reliable in terms of its classification capability, though there exist some weaknesses of the 
bias value. The number of closest neighbors is not directly proportional to the results of performance 
of k-NN. Its general performance is influenced by the percentage of the class distribution between the 
training and test data, as well as the characteristics of the dataset. In Table 6, it is clear that the 
determination of k = 1 is too small to produce a poor result from the three random sampling methods 
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used. The k-NN with k = 1 means that the test data is only based on one of the closest neighbors, 
which may be the one who are more like the test data.  

Table 6.  Results of experiment 

Sample k 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
AUC 

Linear 

 

1 64.52 76.67 72.86 0.5 

10 78.45 76.67 93.47 0.044 

25 76.15 76.67 95.48 0.055 

50 75 76.67 96.98 0.06 

60 76.54 77.08 98.99 0.06 

100 76.92 76.92 100 0.06 

200 76.92 76.92 100 0.06 

Shuffled 

 

1 73.74 85.37 80.22 0.5 

10 84.2 85.72 94.57 0.826 

25 83.4 84.64 96.03 0.853 

50 83.8 82.84 99.57 0.869 

60 81.51 80.64 100 0.869 

100 76.89 76.89 100 0.857 

200 76.89 76.89 100 0.85 

Stratified 1 72.98 84.65 79.34 0.5 

10 84.55 86.19 95.5 0.781 

25 83.03 83.93 96.5 0.853 

50 83.42 82.86 99 0.869 

60 82.65 81.66 100 0.868 

100 76.85 76.85 100 0.863 

200 76.85 76.85 100 0.855 

Where: Red = bad, blue = good 

The Shuffled sampling and stratified sampling methods using the nearest neighbor k > 60 resulted 
in the k-NN having a 100% recall value. This is an indication that k-NN could correctly guess which 
students pass and fail in each selection period (only 60 students accepted). Therefore, using the 60 
closest neighbors with the balance data of each class between the test and balanced training data gives 
a 100% recall value. But the value of k for the imbalance data is 60, and therefore could not achieve a 
100% recall.. This is because the amount of passing grade data of 60 out of 259 could not be equal in 
terms of percentage between the trainingand test data upon encrypted.  

V. Conclusions 

This study succeeded in recommending to examiners to determine the educational status of 
students within a limited period of time. Since all assessment data are obtained in seconds, the 
researchers are able to determine whether the students would graduate from the tahfiz program or not. 
In this system, there is also no significant difference in perceptions of examiners. The k-NN is proven 
to have good performance for imbalance class distribution when the percentage of each class between 
training and test data is the same. However, it gives bad results when the percentage between training 
and test data is not the same. Further research is expected to be able to make comparisons between the 
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algorithms or other methods, use of various datasets in terms of number of attributes. Then, the 
datasets should have the characteristics of balance class distribution, in order to have a better 
understanding as regards the performance of k-NN compared with other methods while solving 
problems related to imbalanced class distribution. 
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