
(2) Lili Ayu Wulandhari

*corresponding author
AbstractThis research examines public sentiment and discourse surrounding the 2024 Indonesian Presidential and Vice Presidential Election through analysis of YouTube comments. Using a combination of deep learning techniques, specifically Long Short-Term Memory (LSTM) networks for sentiment analysis and Latent Dirichlet Allocation (LDA) for topic extraction, we analyzed public responses to the three presidential candidates. The LSTM model achieved varying accuracy rates across candidates: 58% for Anies Baswedan, 61% for Prabowo Subianto, and 71% for Ganjar Pranowo, with consistently high recall rates of 100% across all candidates. Topic extraction through LDA revealed distinct themes in public discourse, including leadership qualities, policy implementations, and campaign promises. The research methodology involved web scraping YouTube comments from January to October 2023, followed by comprehensive text preprocessing and analysis. Our findings provide valuable insights into public opinion dynamics and key discussion topics during the election period, contributing to the understanding of social media's role in Indonesian political discourse. This study demonstrates the effectiveness of combining deep learning approaches for analyzing large-scale social media data in the context of political communications KeywordsSentiment Analysis Topic Extraction Deep Learning LSTM LDA
|
DOIhttps://doi.org/10.29099/ijair.v8i1.1.1378 |
Article metrics10.29099/ijair.v8i1.1.1378 Abstract views : 101 |
Cite |
References
Kiptiah, M., "Motivasi Keterwakilan Perempuan dalam Politik Pada Pemilu Legislatif Di Kabupaten Tanah Laut," Jurnal Humaniora Teknologi, vol. 5, no. 1, pp. 13-18, 2019.
Soebakir, D. R., Pratama, B. I., & Hair, A., "Pemetaan Meme Politik Pasca Pemilihan Umum Presiden Indonesia 2019," Kanal: Jurnal Ilmu Komunikasi, vol. 8, no. 2, pp. 58-66, 2020.
Siregar, A. U., "Penggunaan Media Sosial pada Pemilih Pemula dalam Partisipasi Politik Pasca Pemilihan Presiden 2019 di Kota Medan," Jurnal Simbolika: Research and Learning in Communication Study, vol. 7, no. 1, pp. 19-26, 2021.
Prianto, C., Harani, N. H., & Firmansyah, I., "Analisis Sentimen Terhadap Kandidat Presiden Republik Indonesia Pada Pemilu 2019 di Media Sosial Youtube," Jurnal Media Informatika Budidarma, vol. 3, no. 4, pp. 405, 2019.
Kurniawan, I., & Susanto, A., "Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019," Eksplora Informatika, vol. 9, no. 1, pp. 1-10, 2019.
Syaifuddin, A., Harianto, R. A., & Santoso, J., "Analisis Trending Topik untuk Percakapan Media Sosial dengan Menggunakan Topic Modelling Berbasis Algoritme LDA," Journal of Intelligent System and Computation, vol. 2, no. 1, pp. 12-19, 2021.
Naury, C., Fudholi, D. H., & Hidayatullah, A. F., "Topic Modelling pada Sentimen Terhadap Headline Berita Online Berbahasa Indonesia Menggunakan LDA dan LSTM," Jurnal Media Informatika Budidarma, vol. 5, no. 1, pp. 24, 2021.
Wicaksono, H. Y., "Analisis Sentimen Data Youtube Mengenai Program Vaksinasi di Indonesia Menggunakan Algoritma Backpropagation," MATHunesa: Jurnal Ilmiah Matematika, vol. 10, no. 1, pp. 161-169, 2022.
Vonega, D. A., Fadila, A., & Kurniawan, D. E., "Analisis Sentimen Youtube Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024," Journal of Applied Informatics and Computing, vol. 6, no. 2, pp. 129-135, 2022.
Nababan, A. P. R., Lumenta, A. S. M., Rindengan, Y. D., Pontoh, F. J., & Akay, Y. V., "Analisis Sentimen Youtube Pasca Pengumuman Hasil Pilpres 2019 Menggunakan Metode Lexicon Analysis," Jurnal Universitas Sam Ratulangi, vol. 15, 2020.
Seno, D. W., & Wibowo, A., "Analisis Sentimen Data Youtube Tentang Pasangan Capres-Cawapres Pemilu 2019 Dengan Metode Lexicon Based Dan Support Vector Machine," Jurnal Ilmiah FIFO, vol. 11, no. 2, pp. 144, 2019.
Hariyadi, D., et al., "Analisis Kualitas Udara Berbasis Dashboard Menggunakan ELK Stack," JIKO (Jurnal Informatika Dan Komputer), 2023.
Hermawan, A., et al., "Implementasi Text-Mining untuk Analisis Sentimen pada Youtube dengan Algoritma Support Vector Machine," JST (Jurnal Sains Dan Teknologi), 2023.
Kanakaraddi, S.G., et al., "Sentiment Analysis of Covid-19 Tweets Using Machine Learning and Natural Language Processing," Advances in Intelligent Systems and Computing, 2022.
Syaifuddin, A., et al., "Analisis Trending Topik untuk Percakapan Media Sosial dengan Menggunakan Topic Modelling Berbasis Algoritme LDA," Journal of Intelligent System and Computation, 2021.
Cahyaningtyas, S., et al., "Deep Learning for Aspect-Based sentiment analysis on Indonesian hotels reviews," Kinetik Game Technology Information System Computer Network Computing Electronics and Control, 2021.
A. Alamoodi et al., "Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review," Expert Systems with Applications, vol. 167, p. 114155, 2021.
Z. Liu, Y. Xu, and P. Jiang, "Deep Learning-Based Sentiment Analysis of YouTube Comments," IEEE Access, vol. 9, pp. 131399-131409, 2021.
D. Q. Nguyen, T. Vu, and A. T. Nguyen, "BERTweet: A pre-trained language model for English Tweets," in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 9-14, 2020.
W. Zhang, Y. Chai, H. Wang, and G. Zhai, "Deep Learning for Social Media Content Analysis: A Comprehensive Study," IEEE Access, vol. 9, pp. 66430-66446, 2021.
S. Kanakaraddi et al., "Sentiment Analysis of Covid-19 Tweets Using Machine Learning and Natural Language Processing," in Advances in Intelligent Systems and Computing, Springer Singapore, pp. 233-242, 2022.
V. Vargas-Calderón et al., "Using machine learning and information visualisation for discovering latent topics in YouTube news," in International Conference on Human-Computer Interaction, Springer, pp. 170-185, 2020.
T. Mikolov et al., "Efficient Estimation of Word Representations in Vector Space," in International Conference on Learning Representations (ICLR), 2013.
M. Hoffman, F. R. Bach, and D. M. Blei, "Online Learning for Latent Dirichlet Allocation," Advances in Neural Information Processing Systems, vol. 23, pp. 856-864, 2020.
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," in Proceedings of NAACL-HLT 2019, pp. 4171-4186, 2019.
D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet Allocation," Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
________________________________________________________
The International Journal of Artificial Intelligence Research
Organized by: Departemen Teknik Informatika
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
Email: jurnal.ijair@gmail.com
This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.