(2) * Dyah Aruming Tyas
(3) Agus Harjoko
*corresponding author
AbstractLung diseases such as pneumonia, tuberculosis, and COVID-19 pose serious global health challenges, particularly in X-ray image classification where class distribution is often imbalanced. To address this issue, this study proposes a hybrid model based on concatenated CNN architectures and applies class weighting using focal loss multiclass. The dataset consists of 7,135 X-ray images divided into four main classes: pneumonia, tuberculosis, COVID-19, and normal. Focal loss with a gamma parameter of 2.0 is employed to enhance the model’s focus on minority classes. Evaluation results show that combined models such as DenseNet121 + VGG16 and VGG16 + ResNet50 achieve F1-scores of up to 0.87, outperforming single models. Grad-CAM visualizations also indicate that the combined models can recognize pathological areas more comprehensively and accurately. This approach proves effective in improving the accuracy and sensitivity of AI-based diagnostic systems. KeywordsImbalanced dataset; Chest X-ray classification; Lung disease diagnosis; CNN concatenation; Focal loss multiclass; Grad-CAM interpretability
|
DOIhttps://doi.org/10.29099/ijair.v9i2.1519 |
Article metrics10.29099/ijair.v9i2.1519 Abstract views : 2 |
Cite |
References
L. Venkataramana, D. V. V. Prasad, S. Saraswathi, C. M. Mithumary, R. Karthikeyan, and N. Monika, “Classification of COVID-19 from tuberculosis and pneumonia using deep learning techniques,” Med. Biol. Eng. Comput., vol. 60, no. 9, pp. 2681–2691, 2022, doi: 10.1007/s11517-022-02632-x.
M. S. Ahmed et al., “Joint Diagnosis of Pneumonia, COVID-19, and Tuberculosis from Chest X-ray Images: A Deep Learning Approach,” Diagnostics, vol. 13, no. 15, 2023, doi: 10.3390/diagnostics13152562.
N. Hilmizen, A. Bustamam, and D. Sarwinda, “The Multimodal Deep Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X-Ray Images,” 2020 3rd Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2020, pp. 26–31, 2020, doi: 10.1109/ISRITI51436.2020.9315478.
A. Hamza et al., “COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization,” Front. Public Heal., vol. 10, 2022, doi: 10.3389/fpubh.2022.948205.
M. Mamalakis et al., “DenResCov-19: A deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays,” Comput. Med. Imaging Graph., vol. 94, 2021, doi: 10.1016/j.compmedimag.2021.102008.
H. Malik, T. Anees, A. S. Al-Shamaylehs, S. Z. Alharthi, W. Khalil, and A. Akhunzada, “Deep Learning-Based Classification of Chest Diseases Using X-rays, CT Scans, and Cough Sound Images,” Diagnostics, vol. 13, no. 17, 2023, doi: 10.3390/diagnostics13172772.
N. V Chawla, K. W. Bowyer, L. O. Hall, and W. S. Philip Kegelmeyer, “synthetic minority over-sampling Technique,” J Artif Intell Res, vol. 16, p. 16, 2018.
M. Salmi, D. Atif, D. Oliva, A. Abraham, and S. Ventura, Handling imbalanced medical datasets: review of a decade of research, vol. 57, no. 10. Springer Netherlands, 2024. doi: 10.1007/s10462-024-10884-2.
J. Singh et al., “Batch-balanced focal loss: a hybrid solution to class imbalance in deep learning.,” J. Med. Imaging, vol. 10, no. 5, pp. 051809--, Jun. 2023, doi: 10.1117/1.jmi.10.5.051809.
S. Iqbal, A. N. Qureshi, J. Li, I. A. Choudhry, and T. Mahmood, “Dynamic learning for imbalanced data in learning chest X-ray and CT images,” Heliyon, vol. 9, no. 6, p. e16807, 2023, doi: 10.1016/j.heliyon.2023.e16807.
D. Kuzinkovas and S. Clement, “The Detection of COVID-19 in Chest X-rays Using Ensemble CNN Techniques,” Inf., vol. 14, no. 7, 2023, doi: 10.3390/info14070370.
T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 318–327, 2020, doi: 10.1109/TPAMI.2018.2858826.
D. A. Tyas, T. Ratnaningsih, A. Harjoko, and S. Hartati, “The Classification of Abnormal Red Blood Cell on The Minor Thalassemia Case Using Artificial Neural Network and Convolutional Neural Network,” in Proceedings of the International Conference on Video and Image Processing, in ICVIP ’17. New York, NY, USA: Association for Computing Machinery, 2017, pp. 228–233. doi: 10.1145/3177404.3177438.
K. C. L. Wong, T. Syeda-Mahmood, and M. Moradi, “Building medical image classifiers with very limited data using segmentation networks,” Med. Image Anal., vol. 49, pp. 105–116, 2018, doi: 10.1016/j.media.2018.07.010.
A. H. Al-Timemy, R. N. Khushaba, Z. M. Mosa, and J. Escudero, “An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings,” Stud. Syst. Decis. Control, vol. 358, no. December, pp. 77–100, 2021, doi: 10.1007/978-3-030-69744-0_6.
R. Sarki, K. Ahmed, H. Wang, Y. Zhang, and K. Wang, “Automated detection of COVID-19 through convolutional neural network using chest x-ray images,” PLoS One, vol. 17, no. 1 January, pp. 1–15, 2022, doi: 10.1371/journal.pone.0262052.
M. Nahiduzzaman et al., “Parallel CNN-ELM: A multiclass classification of chest X-ray images to identify seventeen lung diseases including COVID-19,” Expert Syst. Appl., vol. 229, no. PA, Nov. 2023, doi: 10.1016/j.eswa.2023.120528.
M. M. M. Alghamdi and M. Y. H. Dahab, “Diagnosis of COVID-19 from X-ray images using deep learning techniques,” Cogent Eng., vol. 9, no. 1, 2022, doi: 10.1080/23311916.2022.2124635.
M. V. Sanida, T. Sanida, A. Sideris, and M. Dasygenis, “An Advanced Deep Learning Framework for Multi-Class Diagnosis from Chest X-ray Images,” J, vol. 7, no. 1, pp. 48–71, 2024, doi: 10.3390/j7010003.
T. T. Ifty, S. A. Shafin, S. M. Shahriar, and T. Towhid, “Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI,” 2024 IEEE 3rd Int. Conf. Comput. Mach. Intell. ICMI 2024 - Proc., 2024, doi: 10.1109/ICMI60790.2024.10586202.
M. Bhandari, T. B. Shahi, B. Siku, and A. Neupane, “Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI,” Comput. Biol. Med., vol. 150, no. June, 2022, doi: 10.1016/j.compbiomed.2022.106156.
J. C. Chien, J. Der Lee, C. S. Hu, and C. T. Wu, “The Usefulness of Gradient-Weighted CAM in Assisting Medical Diagnoses,” Appl. Sci., vol. 12, no. 15, 2022, doi: 10.3390/app12157748.
T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, “Automated detection of COVID-19 cases using deep neural networks with X-ray images,” Comput. Biol. Med., vol. 121, no. April, p. 103792, 2020, doi: 10.1016/j.compbiomed.2020.103792.
M. H. Al-Sheikh, O. Al Dandan, A. S. Al-Shamayleh, H. A. Jalab, and R. W. Ibrahim, “Multi-class deep learning architecture for classifying lung diseases from chest X-Ray and CT images,” Sci. Rep., vol. 13, no. 1, pp. 1–14, 2023, doi: 10.1038/s41598-023-46147-3.
D. M. Ibrahim, N. M. Elshennawy, and A. M. Sarhan, “Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases,” Comput. Biol. Med., vol. 132, p. 104348, 2021, doi: 10.1016/j.compbiomed.2021.104348.
JtiptJ, “Chest X-Ray (Pneumonia,Covid-19,Tuberculosis),” Kaggle. Accessed: Apr. 03, 2024. [Online]. Available: https://www.kaggle.com/datasets/jtiptj/chest-xray-pneumoniacovid19tuberculosis
M. Kuhn and K. Johnson, Applied predictive modeling, 1st ed. Springer New York, NY, 2013. doi: 10.1007/978-1-4614-6849-3.
M. Bekkar, H. K. Djemaa, and T. A. Alitouche, “Evaluation Measures for Models Assessment over Imbalanced Data Sets,” J. Inf. Eng. Appl., vol. 3, no. 10, pp. 27–38, 2013, [Online]. Available: http://www.iiste.org/Journals/index.php/JIEA/article/view/7633

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
________________________________________________________
The International Journal of Artificial Intelligence Research
Organized by: Prodi Teknik Informatika Fakultas Teknologi Bisnis dan Sains
Published by: Universitas Dharma Wacana
Jl. Kenanga No. 03 Mulyojati 16C Metro Barat Kota Metro Lampung
Email: jurnal.ijair@gmail.com

This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.












