(2) Mad Helmi ab Majid
(3) Y. Yohakim Marwanta
(4) Didi Susianto
*corresponding author
AbstractThis study aims to model the critical enablers driving technological innovation in higher education institutions in Indonesia by integrating Interpretive Structural Modeling (ISM) and Analytic Network Process (ANP). The hybrid approach provides both structural and quantitative insights into the interrelationships among eight identified enablers: policies and regulations, digital infrastructure, faculty competence, technology incentives, industry collaboration, student literacy, innovation culture, and data security. The ISM results classify policies and regulations and digital infrastructure as driving factors that form the foundational layer of innovation ecosystems. Meanwhile, faculty competence, technology incentives, and industry collaboration serve as linkage factors that bridge strategic policies and operational implementation, whereas student literacy, innovation culture, and data security emerge as dependent factors representing the system’s outcomes. The ANP results reinforce the ISM structure, revealing that policies and regulations (0.215) and digital infrastructure (0.187) have the highest influence, followed by faculty competence (0.142) and industry collaboration (0.130). The combined ISM–ANP framework demonstrates that sustainable educational technology innovation requires a synergistic interaction between governance, human resources, and digital culture. The findings provide a comprehensive model that can guide universities and policymakers in formulating evidence-based digital transformation strategies within the Indonesian higher education context
KeywordsEducational Technology Innovation, Interpretive Structural Modeling (ISM), Analytic Network Process (ANP), Higher Education, Indonesia
|
Article metricsAbstract views : 5 |
Cite |
References
I. H.-Y. Chiu, “A new era in fintech payment innovations? A perspective from the institutions and regulation of payment systems,” Law Innov. Technol., vol. 9, no. 2, pp. 190–234, July 2017, doi: 10.1080/17579961.2017.1377912.
S. Fatimah, T. Hidayat, and R. Wulandari, “Analisis kesiapan infrastruktur digital dan keamanan data di lingkungan perguruan tinggi,” J. Ilmu Komput. Dan Teknol., vol. 18, no. 3, pp. 233–242, 2021.
S. E. Harpe, “How to analyze Likert and other rating scale data,” Curr. Pharm. Teach. Learn., vol. 7, no. 6, pp. 836–850, Nov. 2015, doi: 10.1016/j.cptl.2015.08.001.
K. P. Kebudayaan, Kebijakan Merdeka Belajar–Kampus Merdeka. Jakarta: Kemendikbud RI, 2020.
A. Purwanto, R. Pramono, M. Asbari, C. C. Hyun, P. B. Santoso, and L. M. Wijayanti, “Studi eksploratif dampak COVID-19 terhadap pembelajaran daring di pendidikan tinggi,” J. Pendidik. Dan Pengajaran, vol. 53, no. 2, pp. 59–72, 2020.
J. Hatammimi and A. Krisnawati, “Financial literacy for entrepreneur in the industry 4.0 era: A conceptual framework in Indonesia,” in Proceedings of the 2018 10th International Conference on Information Management and Engineering, Ho Chi Minh City, Vietnam, Nov. 2018, pp. 183–187.
M. R. Arifin, B. S. Raharja, A. Nugroho, and F. Aligarh, “The Relationship Between Corporate Innovation and Corporate Governance: Empirical Evidence from Indonesia,” J Asian Financ Econ Bus, vol. 9, pp. 105–112, 2022.
A. Yamin and E. Suryadi, “Strategi penguatan kolaborasi industri dalam pengembangan inovasi teknologi pendidikan di PTN Indonesia,” J. Teknol. Dan Pembelajaran, vol. 11, no. 2, pp. 83–97, 2023.
F. Andriani and B. Sunarso, “Analisis faktor penggerak inovasi pendidikan digital di Indonesia,” J. Teknol. Pendidik., vol. 23, no. 2, pp. 101–112, 2021.
A.-Y. Chang, K.-J. Hu, and Y.-L. Hong, “An ISM-ANP approach to identifying key agile factors in launching a new product into mass production,” Int J Prod Res, vol. 51, pp. 582–597, 2013.
Z. Chen, X. Ming, X. Zhang, D. Yin, and Z. Sun, “A rough-fuzzy DEMA?-ANP method for evaluating sustainable value requirement of product service system,” J Clean Prod, vol. 228, pp. 485–508, 2019.
T. L. Saaty, “Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network,” J Syst Sci Syst Eng, vol. 13, pp. 129–157, 2004.
R. Setiawan and D. Pratama, “Transformasi digital di perguruan tinggi: Tantangan dan strategi,” J. Adm. Pendidik., vol. 29, no. 1, pp. 71–85, 2022.
O. Zawacki-Richter, V. I. Marín, M. Bond, and F. Gouverneur, “Systematic review of research on artificial intelligence applications in higher education–Where are the educators?,” Int. J. Educ. Technol. High. Educ., vol. 16, no. 1, pp. 1–27, 2019, doi: 10.1186/s41239-019-0171-0.
S. B. Bayaa Martin Saana, E. Ablordeppey, N. J. Mensah, and T. K. Karikari, “Academic dishonesty in higher education: students’ perceptions and involvement in an African institution,” BMC Res. Notes, vol. 9, no. 1, p. 234, Dec. 2016, doi: 10.1186/s13104-016-2044-0.
T. L. Saaty, “Decision Making with Dependence and Feedback: The analytic Network Process; RWS Publications,” vol. 4922. Pittsburgh, PA, USA, p. 481, 1996.
S. Warshall, “A Theorem on Boolean Matrices,” J. ACM, vol. 9, no. 1, pp. 11–12, Jan. 1962, doi: 10.1145/321105.321107.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
________________________________________________________
The International Journal of Artificial Intelligence Research
Organized by: Prodi Teknik Informatika Fakultas Teknologi Bisnis dan Sains
Published by: Universitas Dharma Wacana
Jl. Kenanga No. 03 Mulyojati 16C Metro Barat Kota Metro Lampung
Email: jurnal.ijair@gmail.com

This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.






