A Multi-Feature Fusion Framework for Sentiment Analysis Based on Textual and Affective Signals

(1) Hussein Ala'a Alkaabi Mail (Ministry of Education Iraq, General Directorate of Education in Al-Najaf, Al-Najaf 54001, Iraq., Iraq)
(2) * ali kadhim jasim Mail (Department of Computer Engineering, Imam Ja'afar Al-Sadiq University, Maysan - Iraq., Iraq)
*corresponding author

Abstract


Sentiment analysis of social media content, particularly on platforms like Twitter, presents significant challenges due to the informal, brief, and context-dependent nature of user-generated text. Traditional lexicon-based and shallow machine learning approaches often fail to capture nuanced sentiment expressions, especially in the presence of slang, abbreviations, sarcasm, and emotionally charged language. To address these limitations, this paper proposes a novel tri-stream feature fusion framework that integrates contextual semantics, sequential dependencies, and affective signals for robust sentiment classification. The framework employs RoBERTa to extract rich contextual embeddings, Bidirectional Long Short-Term Memory (BiLSTM) networks to capture word-order and temporal patterns, and lexicon-based emotion vectors to enhance emotional cue detection. These heterogeneous features are concatenated at the representation level to form a comprehensive feature space, which is subsequently used to predict sentiment polarity via a fully connected neural network classifier. Extensive experiments conducted on the Sentiment140 dataset, comprising 1.6 million labeled tweets, demonstrate that the proposed approach significantly outperforms conventional baselines and recent hybrid models, achieving an accuracy of 92.1%. Additionally, ablation studies and misclassification analyses reveal each feature stream’s complementary contributions and highlight challenges in detecting sarcasm and implicit sentiment. Future work will integrate sarcasm-aware components and external knowledge sources to further enhance model interpretability and robustness.


Keywords


Sentiment Analysis; Feature Fusion; Textual Representation; Emotion Signals; Deep Learning

   

DOI

https://doi.org/10.29099/ijair.v9i2.1634
      

Article metrics

10.29099/ijair.v9i2.1634 Abstract views : 5

   

Cite

   

References


Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780.?

AL-Jumaili, A. S. A., & Tayyeh, H. K. (2020). A hybrid method of linguistic and statistical features for Arabic sentiment analysis. Baghdad Science Journal, 17(1), 26.?

Al-Kaabi, H., Darroudi, A. D., & Jasim, A. K. (2024). Survey of SMS spam detection techniques: A taxonomy. AlKadhim Journal for Computer Science, 2(4), 23-34.?

Salman Al-Tameemi, I. K., Feizi-Derakhshi, M. R., Pashazadeh, S., & Asadpour, M. (2023). An efficient sentiment classification method with the help of neighbors and a hybrid of RNN models. Complexity, 2023(1), 1896556.?

Bashiri, H., & Naderi, H. (2024). Comprehensive review and comparative analysis of transformer models in sentiment analysis. Knowledge and Information Systems, 66(12), 7305-7361.?

Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley interdisciplinary reviews: data mining and knowledge discovery, 8(4), e1253.?

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.?

Xu, G., Meng, Y., Qiu, X., Yu, Z., & Wu, X. (2019). Sentiment analysis of comment texts based on BiLSTM. Ieee Access, 7, 51522-51532.?

Qi, Y., & Shabrina, Z. (2023). Sentiment analysis using Twitter data: a comparative application of lexicon-and machine-learning-based approach. Social network analysis and mining, 13(1), 31.?

Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N project report, Stanford, 1(12), 2009.?

A. Jazib, W. Tariq and M. Mahmood, "Sentiment Analysis using Ensemble Classifier for Entrepreneurs based on Twitter Analytics," 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2022, pp. 207-212,

P. Upadhyay, S. Saifi, R. Rani, A. Sharma and P. Bansal, "Machine Learning-Based Sentiment Analysis for the Social Media Platforms," 2023 6th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 2023, pp. 1-5,

C. Anitha, "Real-Time Social Media Sentiment Analysis: A Comparative Study of LightGBM and SVM," 2025 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2025, pp. 1947-1950,

Bouassida, Y., & Mezali, H. (2025). Enhancing Twitter sentiment analysis using hybrid transformer and sequence models. Japan J. Res, 6(1), 089.?

Wang, S., Sun, F., & Liu, P. (2024, November). A ConvLSTM model with word-level attention for sentiment analysis of review data. In Fourth International Conference on Advanced Algorithms and Neural Networks (AANN 2024) (Vol. 13416, pp. 723-729). SPIE.?

Ramirez-Alcocer, U.M., Tello-Leal, E., Hernandez-Resendiz, J.D., Romero, G. (2024). A Hybrid CNN-LSTM Approach for Sentiment Analysis. In: Kumar, S., Balachandran, K., Kim, J.H., Bansal, J.C. (eds) Fourth Congress on Intelligent Systems. CIS 2023. Lecture Notes in Networks and Systems, vol 869. Springer, Singapore. https://doi.org/10.1007/978-981-99-9040-5_31

Liu, X., Zhou, G., Kong, M., Yin, Z., Li, X., Yin, L., & Zheng, W. (2023). Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method. Systems, 11(8), 390. https://doi.org/10.3390/systems11080390

Ouni, C., Benmohamed, E., & Ltifi, H. (2024). Deep learning-based Soft word embedding approach for sentiment analysis. Procedia Computer Science, 246, 1355-1364.?

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011, June). Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies (pp. 142-150).?

McAuley, J., Pandey, R., & Leskovec, J. (2015, August). Inferring networks of substitutable and complementary products. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794).?

Alkaabi, H., Jasim, A. K., & Darroudi, A. (2025). From Static to Contextual: A Survey of Embedding Advances in NLP. PERFECT: Journal of Smart Algorithms, 2(2), 64-73.?

Nafea, A. A., Muayad, M. S., Majeed, R. R., Ali, A., Bashaddadh, O. M., Khalaf, M. A., ... & Steiti, A. (2024). A brief review on preprocessing text in Arabic language dataset: Techniques and challenges. Babylonian Journal of Artificial Intelligence, 2024, 46-53.?

Al-Kabbi, H. A., Feizi-Derakhshi, M. R., & Pashazadeh, S. (2024). A Hierarchical Two-Level Feature Fusion Approach for SMS Spam Filtering. Intelligent Automation & Soft Computing, 39(4).?

Wu, K., Peng, X., Chen, Z., Su, H., Quan, H., & Liu, H. (2023). A novel short-term household load forecasting method combined BiLSTM with trend feature extraction. Energy Reports, 9, 1013-1022.?

Khoo, C. S., & Johnkhan, S. B. (2018). Lexicon-based sentiment analysis: Comparative evaluation of six sentiment lexicons. Journal of Information Science, 44(4), 491-511.?

Derakhshi, M. R. F., Zafarani-Moattar, E., Al-Kabi, H. A. A., & Almarashy, A. H. J. (2024). Pclf: parallel cnn-lstm fusion model for sms spam filtering. In BIO Web of Conferences (Vol. 97, p. 00136). EDP Sciences.?

Alameady, M. H. H., Mosa, M. O., Aljarrah, A. A., & Razzaq, H. S. (2022). Deep convolutional neural network classified the pneumonia and coronavirus diseases (covid-19) by softmax nonlinearity function. International Journal of Nonlinear Analysis and Applications, 13(1), 2245-2251.?

Olawale-Shosanya, S. O., Olusanya, O. O., Joseph, A. O., Idowu, K. O., Eriwa, O. B., Adebare, A. O., & Usman, M. A. (2024). A Meta-Ensemble Predictive Model For The Risk Of Lung Cancer. Al-Bahir, 5(1), 4.?

Dang, V. M. H., & Verma, R. M. (2024, April). Data quality in nlp: Metrics and a comprehensive taxonomy. In International Symposium on Intelligent Data Analysis (pp. 217-229). Cham: Springer Nature Switzerland.?

Jasim, A. K., Al-Rikabi, M. R., Al-Ibraheem, F. A., Al-Kaabi, H. A., & Kamber, A. (2025, September). BERT-Enhanced Dual-Attention RNN for Short Text Spam Detection. In International Conference on Cybersecurity and Artificial Intelligence Strategies (pp. 58-70). Cham: Springer Nature Switzerland.?

Al-Kabbi, H. A., Feizi-Derakhshi, M. R., & Pashazadeh, S. (2023). Multi-type feature extraction and early fusion framework for sms spam detection. IEEE Access, 11, 123756-123765.

Falter, M., Godderis, D., Scherrenberg, M., Kizilkilic, S. E., Xu, L., Mertens, M., ... & Dendale, P. (2024). Using natural language processing for automated classification of disease and to identify misclassified ICD codes in cardiac disease. European Heart Journal-Digital Health, 5(3), 229-234.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

The International Journal of Artificial Intelligence Research

Organized by: Prodi Teknik Informatika Fakultas Teknologi Bisnis dan Sains
Published by: Universitas Dharma Wacana
Jl. Kenanga No. 03 Mulyojati 16C Metro Barat Kota Metro Lampung

Email: jurnal.ijair@gmail.com

View IJAIR Statcounter

Creative Commons License
This work is licensed under  Creative Commons Attribution-ShareAlike 4.0 International License.