Computer Vision and Image Processing: A Paper Review

Victor Wiley(1*), Thomas Lucas(2),


(1) TSCC Jakarta
(2) TSCC Jakarta
(*) Corresponding Author

Abstract


Computer vision has been studied from many persective. It expands from raw data recording into techniques and ideas combining digital image processing, pattern recognition, machine learning and computer graphics. The wide usage has attracted many scholars to integrate with many disciplines and fields. This paper provide a survey of the recent technologies and theoretical concept explaining the development of computer vision especially related to image processing using different areas of their field application. Computer vision helps scholars to analyze images and video to obtain necessary information,    understand information on events or descriptions, and scenic pattern. It used method of multi-range application domain with massive data analysis. This paper provides contribution of recent development on reviews related to computer vision, image processing, and their related studies. We categorized the computer vision mainstream into four group e.g., image processing, object recognition, and machine learning. We also provide brief explanation on the up-to-date information about the techniques and their performance.


Keywords


computer vision image processing digital image

Full Text:

PDF

Article Metrics

Abstract view : 367 times
PDF - 51 times

References


Patel, Krishna Kumar, A. Kar, S. N. Jha, and M. A. Khan. "Machine vision system: a tool for quality inspection of food and agricultural products." Journal of food science and technology 49, no. 2 (2012): 123-141. doi: 10.1007/s13197-011-0321-4

Cosido, Oscar, Andres Iglesias, Akemi Galvez, Raffaele Catuogno, Massimiliano Campi, Leticia Terán, and Esteban Sainz. "Hybridization of Convergent Photogrammetry, Computer Vision, and Artificial Intelligence for Digital Documentation of Cultural Heritage-A Case Study: The Magdalena Palace." In Cyberworlds (CW), 2014 International Conference on, pp. 369-376. IEEE, 2014. DOI: 10.1109/CW.2014.58

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440. 2015. DOI: 10.1109/CVPR.2015.7298965

Babatunde, Oluleye Hezekiah, Leisa Armstrong, Jinsong Leng, and Dean Diepeveen. "A survey of computer-based vision systems for automatic identification of plant species." Journal of Agricultural Informatics 6, no. 1 (2015): 61-71. doi:10.17700/jai.2015.6.1.152

Patel, Krishna Kumar, A. Kar, S. N. Jha, and M. A. Khan. "Machine vision system: a tool for quality inspection of food and agricultural products." Journal of food science and technology 49, no. 2 (2012): 123-141. doi: 10.1007/s13197-011-0321-4

Rautaray, Siddharth S., and Anupam Agrawal. "Vision based hand gesture recognition for human computer interaction: a survey." Artificial Intelligence Review 43, no. 1 (2015): 1-54. Doi: 10.1007/s10462-012-9356-9

Ullman, Shimon, Liav Assif, Ethan Fetaya, and Daniel Harari. "Atoms of recognition in human and computer vision." Proceedings of the National Academy of Sciences 113, no. 10 (2016): 2744-2749. doi: 10.1073/pnas.1513198113

Zhao F, Xie X, Roach M. Computer Vision Techniques for Transcatheter Intervention. IEEE Journal of Translational Engineering in Health and Medicine. 2015;3:1900331. doi:10.1109/JTEHM.2015.2446988.

Sigdel M, Dinc I, Sigdel MS, Dinc S, Pusey ML, Aygun RS. Feature analysis for classification of trace fluorescent labeled protein crystallization images. BioData Mining. 2017;10:14. doi:10.1186/s13040-017-0133-9.

Kehoe, Ben, Sachin Patil, Pieter Abbeel, and Ken Goldberg. "A survey of research on cloud robotics and automation." IEEE Transactions on automation science and engineering 12, no. 2 (2015): 398-409. DOI: 10.1109/TASE.2014.2376492

Guo M, Li J, Sheng C, Xu J, Wu L. A Review of Wetland Remote Sensing. Passaro VMN, ed. Sensors (Basel, Switzerland). 2017;17(4):777. doi:10.3390/s17040777.

Breen G-M, Matusitz J. An Evolutionary Examination of Telemedicine: A Health and Computer-Mediated Communication Perspective. Social work in public health. 2010;25(1):59-71. doi:10.1080/19371910902911206.

Matiacevich S, Celis Cofré D, Silva P, Enrione J, Osorio F. Quality Parameters of Six Cultivars of Blueberry Using Computer Vision. International Journal of Food Science. 2013;2013:419535. doi:10.1155/2013/419535.

Mery, Domingo, Franco Pedreschi, and Alvaro Soto. "Automated design of a computer vision system for visual food quality evaluation." Food and Bioprocess Technology 6, no. 8 (2013): 2093-2108. DOI 10.1007/s11947-012-0934-2

Savioja, Lauri, Akio Ando, Ramani Duraiswami, Emanuel AP Habets, and Sascha Spors. "Introduction to the issue on spatial audio." IEEE Journal of Selected Topics in Signal Processing 9, no. 5 (2015): 767-769. DOI: 10.1109/JSTSP.2015.2447112

Zai AT, Bhargava S, Mesgarani N, Liu S-C. Reconstruction of audio waveforms from spike trains of artificial cochlea models. Frontiers in Neuroscience. 2015;9:347. doi:10.3389/fnins.2015.00347.

Liew OW, Chong PCJ, Li B, Asundi AK. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health. Sensors (Basel, Switzerland). 2008;8(5):3205-3239. doi:10.3390/s8053205.

Doulah A, Farooq M, Yang X, et al. Meal Microstructure Characterization from Sensor-Based Food Intake Detection. Frontiers in Nutrition. 2017;4:31. doi:10.3389/fnut.2017.00031.

Jackman,P.,Sun,D.W.,Du,C.J.,Allen,P.and Downey,G.Prediction of beef eating quality from colour, marbling and wavelet texture features.Meat Science,80.4(2008):1273-81. doi: 10.1016/j.meatsci.2008.06.001

Wu H, Zhou Y, Luo Q, Basset MA. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm. Computational Intelligence and Neuroscience. 2016;2016:9063065. doi:10.1155/2016/9063065.

Du,C.J. and Sun,D.W.Multi-classification of pizza using computer vision and support vector machine.Journal of Food Engineering.86.2(2008):234-42. doi:10.1016/j.jfoodeng.2004.03.011

Juson,Y.M.M.,Chin,N.L.,Y.A. and Rahman,R.A.Bread crust thickness measurement using digital imagin and L*a*b*colour system.Journal of Food Engginering,94.3-4(2009):366-71. DOI : 10.1016/j.jfoodeng.2009.04.002

Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies. GigaScience. 2017;6(10):1-7. doi:10.1093/gigascience/gix084.

Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6) (1986): 679 – 698. DOI: 10.1109/TPAMI.1986.4767851

Vacchetti, L., Lepetit, V., and Fua, P. Stable realtime 3d tracking using online and offline information. TPAMI, 26(10) (2004):1385–1391. DOI: 10.1109/TPAMI.2004.92

Yang, Wei, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. "End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3073-3082. 2016. DOI: 10.1109/CVPR.2016.335

Cabessa J, Villa AEP. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks. Gómez S, ed. PLoS ONE. 2014;9(4):e94204. doi:10.1371/journal.pone.0094204.

Su, Hang, Shaogang Gong, Xiatian Zhu, Adrian Popescu, Alexandru Ginsca, Herve Le Borgne, Yuen Peng Loh et al. "WebLogo-2M: Scalable Logo Detection by Deep Learning From the Web." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270-279. 2017. DOI: 10.1109/CVPR.2015.7298670

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2015. DOI: 10.1109/CVPR.2015.7298594

Forder L, Taylor O, Mankin H, Scott RB, Franklin A. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness. Ben Hamed S, ed. PLoS ONE. 2016;11(3):e0152212. doi:10.1371/journal.pone.0152212.

Nasrollahi, Kamal, Sergio Escalera, Pejman Rasti, Gholamreza Anbarjafari, Xavier Baro, Hugo Jair Escalante, and Thomas B. Moeslund. "Deep learning based super-resolution for improved action recognition." In Image Processing Theory, Tools and Applications (IPTA), 2015 International Conference on, pp. 67-72. IEEE, 2015. DOI: 10.1109/IPTA.2015.7367098

Nandakumar, Vivek, Nanna Hansen, Honor L. Glenn, Jessica H. Han, Stephanie Helland, Kathryn Hernandez, Patti Senechal, Roger H. Johnson, Kimberly J. Bussey, and Deirdre R. Meldrum. "Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells." Scientific reports 6 (2016). doi:10.1038/srep30593

Siddique, Nazmul, and Hojjat Adeli. Computational intelligence: synergies of fuzzy logic, neural networks and evolutionary computing. John Wiley & Sons, 2013. DOI: 10.1002/9781118534823

Kubat, Miroslav. "Artificial neural networks." In An Introduction to Machine Learning, pp. 91-111. Springer International Publishing, 2015. DOI https://doi.org/10.1007/978-3-319-20010-1_5

Bakirtzis, Anastasios, and Spyros Kazarlis. "Genetic algorithms." Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence: HVDC, FACTS, and Artificial Intelligence (2016): 845-902. DOI: 10.1002/9781119175391

[36] Gharipour, Amin, and Alan Wee-Chung Liew. "Segmentation of cell nuclei in fluorescence microscopy images: An integrated framework using level set segmentation and touching-cell splitting." Pattern Recognition 58 (2016): 1-11. DOI: 10.1016/j.patcog.2016.03.030

Chaiprapat, S., and S. Rujikietgumjorn. “Modeling of Positional Variability of a Fixture Workpiece Due To Locating Errors.” International Journal of Advanced Manufacturing Technology 36(2008): 724–731. http://dx.doi.org/10.1080/0951192X.2013.874580

I. Fogel and D. Sagi. Gabor filters as texture discriminator. Biological Cybernetics, 61(1)( 1989). DOI:https://doi.org/10.1007/BF00204594

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, (1990): 629–639. DOI: 10.1109/34.56205

Jain, A. K., & Farrokhnia, F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24, (1991): 1167–1186. DOI: 10.1016/0031-3203(91)90143-S

Dunn, D., Higgins, W.E., Wakeley, J., Texture segmentation using 2-D Gabor elementary functions. IEEE Trans. PAMI 16,( 1994): 130–149. DOI: 10.1109/34.273736

Bovik, A.C., Clark, M., Geisler, W.S., Multichannel texture analysis using localized spatial filters. IEEE Trans. PAMI 12,( 1990): 55–73. DOI: 10.1109/34.41384

Mao, Jianchang, and Anil K. Jain. "Texture classification and segmentation using multiresolution simultaneous autoregressive models." Pattern recognition 25, no. 2 (1992): 173-188. Doi: 10.1016/0031-3203(92)90099-5

Yhann, Stephan R., and Tzay Y. Young. "Boundary localization in texture segmentation." IEEE transactions on image processing 4, no. 6 (1995): 849-856. DOI: 10.1109/83.388089

Ma, Wei-Ying, and Bangalore S. Manjunath. "EdgeFlow: a technique for boundary detection and image segmentation." IEEE transactions on image processing 9, no. 8 (2000): 1375-1388. DOI: 10.1109/83.855433

Borji, Ali, Ming-Ming Cheng, Huaizu Jiang, and Jia Li. "Salient object detection: A benchmark." IEEE Transactions on Image Processing 24, no. 12 (2015): 5706-5722. DOI: 10.1109/TIP.2015.2487833

Khan, Salman Hameed, Mohammed Bennamoun, Ferdous Sohel, and Roberto Togneri. "Geometry driven semantic labeling of indoor scenes." In European Conference on Computer Vision, pp. 679-694. Springer, Cham, 2014. doi: 10.1007/978-3-319-10590-1_44

Goldblatt, Ran, Wei You, Gordon Hanson, and Amit K. Khandelwal. "Detecting the boundaries of urban areas in india: A dataset for pixel-based image classification in google earth engine." Remote Sensing 8, no. 8 (2016): 634. doi:10.3390/rs8080634

Hsu, Rein-Lien, Mohamed Abdel-Mottaleb, and Anil K. Jain. "Face detection in color images." IEEE transactions on pattern analysis and machine intelligence 24, no. 5 (2002): 696-706. DOI: 10.1109/34.1000242

Lin, Shang-Hung, Sun-Yuan Kung, and Long-Ji Lin. "Face recognition/detection by probabilistic decision-based neural network." IEEE transactions on neural networks 8, no. 1 (1997): 114-132. DOI: 10.1109/72.554196

Huang, Weimin, and Robert Mariani. "Face detection and precise eyes location." In Pattern Recognition, 2000. Proceedings. 15th International Conference on, vol. 4, pp. 722-727. IEEE, 2000. DOI: 10.1109/ICPR.2000.903019

Wong, Kwok-Wai, Kin-Man Lam, and Wan-Chi Siu. "An efficient algorithm for human face detection and facial feature extraction under different conditions." Pattern Recognition 34, no. 10 (2001): 1993-2004. DOI: 10.1016/S0031-3203(00)00134-5

Khan A ul M, Mikut R, Reischl M. A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines. Tian J, ed. PLoS ONE. 2016;11(10):e0165180. doi:10.1371/journal.pone.0165180.

Joulan K, Brémond R, Hautière N. Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society. The Scientific World Journal. 2015;2015:625034. doi:10.1155/2015/625034.

Heri Nurdiyanto, Hermanto Hermanto, “Signature Recognition using Neural Network Probablisitc”, International Journal of Advances in Intelligent Informatics, Vol. 2, Issue 1, pp. 46-53, 2016




DOI: https://doi.org/10.29099/ijair.v2i1.42

Copyright (c) 2018 International Journal of Artificial Intelligence Research

________________________________________________________

Organized by : Departemen Teknik Informatika STMIK Dharma Wacana
Published by : STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
phone. +62725-7850671
Fax. +62725-7850671
Email: info@ijair.id | internationaljournalair@gmail.com

International Journal of artificial intelligence research

Creative Commons License
IJAIR is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.