Classification of Electroencephalogram Signal Sleeping Condition Output EEG Digital Tools Laboratory Clinical Neurophysiology Immanuel Hospital with Support Vector Machine

(1) * Ratnadewi Ratnadewi Mail (Scopus ID : 57189350561 Universitas Kristen Maranatha, Indonesia)
(2) Dedeh Supantini Mail (Universitas Kristen Maranatha, Indonesia)
(3) Decky Gunawan Mail (Universitas Kristen Maranatha, Indonesia)
(4) Dennis Harnandi Mail (Universitas Kristen Maranatha, Indonesia)
(5) Diana Chandrasasmita Mail (Universitas Kristen Maranatha, Indonesia)
*corresponding author


Sleep Disorders like insomnia is one of the main health problems. Sleep deficiencies can increase the risk of diabetes, hypertension and cognitive disorders and behavior. The brain produces electrical signals, when someone is doing any activity such as moving, waking up, sleeping, etc. This electrical signal can be recorded using an electroencephalogram (EEG). In this study, brain signals are read with EEG Digital Laboratory of Clinical Neurophysiology Imanuel Hospital. The EEG signal results will be classified using Machine Learning Support Vector Machine (SVM). EEG signal data was obtained from Immanuel Hospital in Bandung. Conditions to be classified are the condition of waking, drowsiness (stage-1), and sleep (stage-2). Extraction of features using discrete wavelet transform Daubechies DB4. The decomposition level used in this study is Level-1 and Level-2. Based on the tests that have been carried out, the best parameter values obtained are C 10, Gamma 1, and Kernel Poly. Based on these parameters, the accuracy value was 78.8% for level-1, and 76.6% for level-2.


electroencephalogram; Support Vector Machine; Discrete Wavelet transform; brain; signal



Article metrics

10.29099/ijair.v6i2.447 Abstract views : 86 | PDF views : 40




Full Text



A. R. Arifin, Ratnawati, and E. Burhan, “Fisiologi Tidur dan Pernapasan,” J. Respirologi Indones., pp. 1–12, 2010.

R. Behzad and A. Behzad, “The Role of EEG in the Diagnosis and Management of Patients with Sleep Disorders,” J. Behav. Brain Sci., vol. 11, no. 10, pp. 257–266, 2021, doi: 10.4236/jbbs.2021.1110021.

K. A. I. Aboalayon, W. S. Almuhammadi, and M. Faezipour, “A comparison of different machine learning algorithms using single channel EEG signal for classifying human sleep stages,” 2015 IEEE Long Isl. Syst. Appl. Technol. Conf. LISAT 2015, 2015, doi: 10.1109/LISAT.2015.7160185.

Z. Khakim and S. Kusrohmaniah, “Dasar - Dasar Electroencephalography (EEG) bagi Riset Psikologi,” Bul. Psikol., vol. 29, no. 1, p. 92, 2021, doi: 10.22146/buletinpsikologi.52328.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.

M. Diykh and Y. Li, “Complex networks approach for EEG signal sleep stages classification,” Expert Syst. Appl., vol. 63, pp. 241–248, 2016, doi: 10.1016/j.eswa.2016.07.004.

M. Diykh, Y. Li, and P. Wen, “EEG sleep stages classification based on time domain features and structural graph similarity,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 11, pp. 1159–1168, 2016, doi: 10.1109/TNSRE.2016.2552539.

K. A. I. Aboalayon, H. T. Ocbagabir, and M. Faezipour, “Efficient sleep stage classification based on EEG signals,” 2014 IEEE Long Isl. Syst. Appl. Technol. Conf. LISAT 2014, no. October, 2014, doi: 10.1109/LISAT.2014.6845193.

K. A. I. Aboalayon and M. Faezipour, “Multi-class SVM based on sleep stage identification using EEG signal,” 2014 IEEE Healthc. Innov. Conf. HIC 2014, no. October, pp. 181–184, 2014, doi: 10.1109/HIC.2014.7038904.

F. Karimzadeh, E. Seraj, R. Boostani, and M. Torabi-Nami, “Presenting efficient features for automatic CAP detection in sleep EEG signals,” 2015 38th Int. Conf. Telecommun. Signal Process. TSP 2015, pp. 448–452, 2015, doi: 10.1109/TSP.2015.7296302.

N. T. B. Pasaribu, T. Halim, Ratnadewi, and A. Prijono, “EEG signal classification for drowsiness detection using wavelet transform and support vector machine,” IAES Int. J. Artif. Intell., vol. 10, no. 2, pp. 501–509, 2021, doi: 10.11591/IJAI.V10.I2.PP501-509.

D. Cătălin, C. Carmen, I. Dan, H. Tony, I. Ana-Maria, and B. Alexandru, “K - Complex Detection Using the Continuous Wavelet Transform,” ARS Medica Tomitana, vol. 24, no. 4, pp. 144–152, 2018, doi: 10.2478/arsm-2018-0031.

M. Schönauer and D. Pöhlchen, “Sleep spindles,” Current Biology, vol. 28, no. 19, Elsevier, pp. R1129–R1130, 2018. doi: 10.1016/j.cub.2018.07.035.

V. Drago et al., “Cyclic alternating pattern in sleep and its relationship to creativity,” Sleep Med., vol. 12, no. 4, pp. 361–366, 2011, doi: 10.1016/j.sleep.2010.11.009.

J. Zamani and A. B. Naieni, “Best Feature Extraction and Classification Algorithms for EEG Signals in.pdf,” vol. 7, no. 3, pp. 186–191, 2020.

S. Mousavi, F. Afghah, and U. Rajendra Acharya, “Sleepeegnet: Automated sleep stage scoring with sequence to sequence deep learning approach,” PLoS One, vol. 14, no. 5, pp. 1–15, 2019, doi: 10.1371/JOURNAL.PONE.0216456.

A. Al-Qerem, F. Kharbat, S. Nashwan, S. Ashraf, and K. Blaou, “General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution,” Int. J. Distrib. Sens. Networks, vol. 16, no. 3, 2020, doi: 10.1177/1550147720911009.

R. Polikar, “The Engineer’s Ultimate Guide to Wavelet Analysis,” Rowan University, 2001. (accessed Nov. 05, 2022).

K. Schneider and M. Farge, “Wavelets: Mathematical Theory,” Encycl. Math. Phys. Five-Volume Set, pp. 426–438, 2004, doi: 10.1016/B0-12-512666-2/00153-X.

H. Hindarto, A. Muntasa, and S. Sumarno, “Feature Extraction ElectroEncephaloGram (EEG) using wavelet transform for cursor movement,” IOP Conf. Ser. Mater. Sci. Eng., vol. 434, no. 1, 2018, doi: 10.1088/1757-899X/434/1/012261.

A. Chahal and P. Gulia, “Machine learning and deep learning,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 12, pp. 4910–4914, 2019, doi: 10.35940/ijitee.L3550.1081219.

A. S. Nugroho, A. B. Witarto, and D. Handoko, “Support vector machine,” 2019. doi: 10.1016/B978-0-12-815739-8.00006-7.

M. Awad and R. Khanna, Efficient Learning Machines, Theories, Concepts, and Applications for Engineers and System Designers. Apress Open, 2015.

H. Marius, “Multiclass Classification with Support Vector Machines (SVM), Dual Problem and Kernel Functions,” Towardsdatascience.Com, 2020.

M. Nabipour, P. Nayyeri, H. Jabani, S. Shahab, and A. Mosavi, “Predicting Stock Market Trends Using Machine Learning and Deep Learning Algorithms Via Continuous and Binary Data; A Comparative Analysis,” IEEE Access, vol. 8, pp. 150199–150212, 2020, doi: 10.1109/ACCESS.2020.3015966.

Yildirim Soner, “Hyperparameter Tuning for Support Vector Machines — C and Gamma Parameters,” Towards Data Science, 2020. (accessed Oct. 30, 2022).

Scikit-learn, “Cross-validation: evaluating estimator performance,” 2022. (accessed Oct. 30, 2022).

Hale Jeff, “Scale, Standardize, or Normalize with Scikit-Learn | by Jeff Hale | Towards Data Science,” Towards Data Science, 2019. (accessed Oct. 30, 2022).

L. Serafeim, “Everything you need to know about Min-Max normalization: A Python tutorial,” Towards Data Science, 2020. (accessed Oct. 30, 2022).

S. Ozechi, “Machine Learning Pipelines,” 2020.

S. Okamura, “GridSearchCV for Beginners,” Towards Data Science, 2020.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


International Journal Of Artificial Intelligence Research

Organized by: Departemen Teknik Informatika STMIK Dharma Wacana
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung


View IJAIR Statcounter

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.