Image Segmentation for Oyster Mushroom Grade with Canny Detection for Image Classification

(1) Ratih Ayuninghemi Mail (politeknik negeri jember, Indonesia)
(2) * Dia Bitari Mei Yuana Mail (politeknik negeri jember, Indonesia)
(3) Nurul Sjamsijah Mail (politeknik negeri jember, Indonesia)
(4) Lukie Perdanasari Mail (politeknik negeri jember, Indonesia)
(5) Mohammad Hidayatullah Mail (politeknik negeri jember, Indonesia)
(6) Iqbal Ikhlasul Amal Mail (Politeknik Negeri Jember)
*corresponding author

Abstract


Product quality must remain good to consumers and expand market segmentation to increase income and improve farmers' welfare, post-harvest handling needs to be done. One of the post-harvest handlings of fresh oyster mushroom products is grading. The grading process is carried out based on the quality of the oyster mushroom harvest which is classified into three, namely Grade A, Grade B, and Grade C. Computer technology with digital image processing segmentation and image classification using canny edge detection can be the first step in the process of grading fresh oyster mushrooms. so that the image can be processed for canny detection, it is necessary to do image segmentation. From the results of thresholding on the oyster mushroom image, the threshold value of T is obtained, namely with T1 below 50 and T2 above 150. The T threshold value is a classification for the canny detection process. Of the six oyster mushroom datasets, five datasets of oyster mushrooms were obtained accurately, while one mushroom had broken lines and noise.

Keywords


Oyster Mushroom; Grayscale; Image Acquisition; Canny; Edge Detection; Active Contour;

   

DOI

https://doi.org/10.29099/ijair.v6i1.2.468
      

Article metrics

10.29099/ijair.v6i1.2.468 Abstract views : 288 | PDF views : 335

   

Cite

   

Full Text

Download

References


Pertanian, K. Pedoman Teknologi Penanganan Pascapanen Tanaman Obat. Jakarta: Direktorat

Jenderal Hortikultura Direktorat Budidaya Dan Pascapanen Sayuran Dan Tanaman Obat. 2011

Mishra, Vikas Kumar, Shobhit Kumar, and Neeraj Shukla. "Image acquisition and techniques to perform image acquisition."

SAMRIDDHI: A Journal of Physical Sciences, Engineering and Technology 9, no. 01 (2017): 21-24.

W. T. Sesulihatien, D. B. M. Yuana and A. Basuki, "Kinematic Feature for Classifying Larvae:

Aedes Larvae and Culex Larvae," 2020 International Electronics Symposium (IES), 2020, pp.

-654, doi: 10.1109/IES50839.2020.9231938.

Hastawan, Ahmad Fashiha, Risma Septiana, and Yudi Eko Windarto. "Perbaikan hasil segmentasi hsv pada citra digital menggunakan metode segmentasi rgb grayscale." Edu Komputika Journal 6, no. 1, 2019, pp: 32-37.

Yuana, Dia Bitari Mei, Wahjoe Tjatur Sesulihatien, Achmad Basuki, Tri Harsono, Akhmad Alimudin, and Etik Ainun Rohmah. "Mobile sensing in Aedes aegypti larva detection with biological feature extraction." Bulletin of Electrical Engineering and Informatics 9, no. 4, 2020, pp: 1454-1460.

Y. Wan and Q. Xie, "A Novel Framework for Optimal RGB to Grayscale Image Conversion," 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2016, pp. 345-348, doi: 10.1109/IHMSC.2016.201.

Rahmawati, Diana, A. Fiqhi Ibadillah, Miftachul Ulum, and Heri Setiawan. "Design of Automatic Harvest System Monitoring for Oyster Mushroom Using Image Processing." In International Conference on Science and Technology (ICST), 2018, pp. 143-147. Atlantis Press.

S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz and D. Terzopoulos, "Image Segmentation Using Deep Learning: A Survey," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3523-3542, 1 July 2022, doi: 10.1109/TPAMI.2021.3059968.

Kaushik, Akanksha, Parkash C. Mathpal, and Vandini Sharma. "Edge detection and level set active contour model for the segmentation of cavity present in dental X-ray images." International Journal of Computer Applications 96, no. 9 (2014).

Yuana, Dia Bitari Mei, Muhammad Diaz Ellyas Fenca Putra, Leovander Aditama Syahputra, Agil Gilang Chandra Saputra, Marzuki Akmal, and Fatkhul Hidayah. "Pengawasan Nyamuk Aedes aegypti Menggunakan Ovitrap Dengan Metode Image Processing." Journal of Electrical

Engineering and Computer (JEECOM) 4, no. 1 (2022): 27-31.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

The International Journal of Artificial Intelligence Research

Organized by: Departemen Teknik Informatika
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung

Email: jurnal.ijair@gmail.com

View IJAIR Statcounter

Creative Commons License
This work is licensed under  Creative Commons Attribution-ShareAlike 4.0 International License.