APPLICATION OF BACKPROPAGATION NEURAL NETWORKS IN PREDICTING RAINFALL DATA IN AMBON CITY

Yopi Andry Lesnussa(1*), C. G. Mustamu(2), F. Kondo Lembang(3), M. W. Talakua(4),


(1) Jurusan Matematika Fakultas MIPA Universitas Pattimura
(2) Jurusan Matematika FMIPA Universitas Pattimura
(3) Jurusan Matematika FMIPA Universitas Pattimura
(4) Jurusan Matematika FMIPA Universitas Pattimura
(*) Corresponding Author

Abstract


The Artificial Neural Networks is a process of information system on certain traits which as representatives of the human neural networks. The Artificial Neural Networks can be applied in every area of human life, one of them is environment especially about prediction of climate or weather. In this research, the artificial neural network is used to predict the rainfall with Backpropagation method and using MATLAB software. The other meteorology parameters used to predict the rainfall are air temperature, air velocity and air pressure. The result showed less accuracy level is 80% by using alpha 0,7, iteration number (epoch) 10000 and MSE value = 0,0218. Therefore, the result of rainfall prediction system is accurate.


Keywords


Artificial Neural Networks; Backpropagation; Rainfall prediction

Article Metrics

Abstract view : 29 times

References


. M. F. Afandi, Definisi Jaringan Syaraf Tiruan, 2010.

. E. Aldrian. dkk, Adaptasi dan Mitigasi Perubahan Iklim di Indonesia. Pusat Perubahan Iklim dan Kualitas Udara Kedeputian Bidang Klimatologi, Badan Meteorologi, Klimatologi dan Geofisika. Jakarta, 2011.

. Away and A. Gunaidi, Matlab Programming, Bandung: Informatika, 2006.

. Budianto, Jaringan Syaraf Tiruan dalam Proses Data Mining, 2000.

. NN., Buku Putih Sanitasi Kota Ambon Tahun. Pemerintah Daerah Kota Ambon, 2012.

. A. Hermawan, Jaringan Syaraf Tiruan dan Aplikasinya. Yogyakarta : Andi, 2006.

. Ihwan Andi, Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat. Lampung, 2013.

. I. Juaeni, Analisis Variabilitas Curah Hujan Wilayah Indonesia Berdasarkan Pengamatan Tahun 1975-2004 Lembaga Penerbangan dan Antariksa Nasional, 2007.

. A. Jumarwanto, Definisi Jaringan Syaraf Tiruan, 2009.

. C. Oktaviani and Afdal, Prediksi Curah Hujan Bulanan Menggunakan Jaringan Syaraf Tiruan Dengan Beberapa Fungsi Pelatihan Backpropagation, 2013.

. D. Puspitaningrum, Pengantar Jaringan Syaraf Tiruan. Yogyakarta : Andi, 2006.

. S. Puspitorini, Penyelesaian Masalah traveling salesmen problem dengan jaringan syaraf self-organizing, 2012.

. J. J. Siang., Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta: Andi, 2005.

. Subagyo, Pangestu, Forecasting Konsep dan Aplikasi. Yogyakarta: BPPE UGM, 1986.

. Tjasyono, Klimatologi Umum, ITB, Bandung, 2006.

. R. J. Yuniar, dkk, Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation, 2013.




DOI: https://doi.org/10.29099/ijair.v2i2.59

Copyright (c) 2018 International Journal of Artificial Intelligence Research

________________________________________________________

Organized by : Departemen Teknik Informatika STMIK Dharma Wacana
Published by : STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
phone. +62725-7850671
Fax. +62725-7850671
Email: info@ijair.id | internationaljournalair@gmail.com

statcounter International Journal of artificial intelligence research

Creative Commons License
IJAIR is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.