Machine Learning Based Prediction versus Human-as-a-Security-Sensor
(1) Department of Computing and Information Systems, Faculty of Architecture, Computing and Humanities, University of Greenwich
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 721 timesPDF - 104 times
References
Rekouche, K. Early Phishing, arXiv: 1106.4692, 2011.
Kris, S. The Battle Against Identity Theft. Banker 2003, 153, 931.
Eisenstein, E.M. Identity theft: An exploratory study with implications for marketers. Journal of Business Research 2008, 61, 1160–1172.
Sullins, L.L. Phishing for a Solution: Domestic and International Approaches toDecreasing Online Identity Theft. Emory International Law Review 2006, 20, 397.
Group, A.P. Phishing activity trends report, Anti Phishing WorkGroup, 1st Quarter, [online] Available at, 2016.
Jung, J.S.; E.. An Empirical Study of Spam Traffic and the Use of DNSBlack Lists. (Accessed 2004, 18, 370–375.
Felegyhazi, M.; Kreibich, C.P.; V.. On the Potential of Proactive. Domain Blacklisting., LEET 2010, 10, 6–6.
Prakash, P.; Kumar, M.; Kompella, R.G.; M.. PhishNet: Predictive Blacklisting to. 2010, pp. 1–5.
Dong, X.; Clark, J.J.; L, J. Defending the weakest link: phishing websites detection by analysing user behaviours. Telecommunication Systems 2010, 45, 215–226.
Ramzan, Z. Phishing and Two-Factor Authentication Revisited, Symantec SecurityResponse, [online] Available, 2007.
Nilsson, M.; Adams, A.H.; S..Building Security and Trust in OnlineBanking, In CHI ’05 Extended Abstracts on; ACM: New York, NY, USA, 2005.1701–1704, [online] Available at: http://doi.acm.org/10.1145/1056808.1057001 (Accessed 17.
Molloy, I.L.; N.. Attack on the GridCode One-time Password; ACM: New York, NY, USA, 2011; pp. 306–315. online] Available at:http://doi.acm.org/10.1145/1966913.1966953 (Accessed 17.
Zviran, M.; Erlich.; Zippy. Identification and Authentication: Technology and Implementation Issues, Communications of the Association for Information Systems 2006, 17.
Van Oorschot Mannan, M.; P.C.. Using a personal device tostrengthen password authentication from an untrusted computer; 2007; pp. 88–103. SpringerBerlin Heidelberg.
Lu, H.P.; Lu, H.P.; Hsu, C.L.; Hsu, H.Y. An empirical study of the effect of perceived risk upon intention to use online applications. Information Management & Computer Security 2005, 13, 106–120.
Plössl, K.; Federrath, H.; Nowey, T. Protection Mechanisms Against Phishing Attacks. Trust, Privacy, andSecurity in Digital Business, Lecture Notes in Computer Science, Springer Berlin Heidelberg
DodgeJr., R.C.; Carver, C.F.; J, A. Phishing for user securityawareness. Computers & Security 2007, 26, 73–80.
Kumaraguru, P.; Rhee, Y.; Sheng, S.; Hasan, S.; Acquisti, A.; Cranor, L.H. J.(2007) Getting Users to Pay Attention to Anti-phishing Education: Evaluation ofRetention and Transfer; ACM: New York, NY, USA, 2016; pp. 70–81.
Robila, S.R.; W, J. Don’T Be a Phish: Steps in User Education; ACM: New York, NY, USA, 2006; pp. 237–241. Accessed 17 September 2016.
Vishwanath, A.; Herath, T.; Chen, R.; Wang, J.R.; R, H. Why do people getphished? Testing individual differences in phishing vulnerability within anintegrated, information processing model. Decision Support Systems 2011, 51, 576–586.
Del Castillo, M.D.; Iglesias, A.S.; I, J. Detecting Phishing E-mails by Heterogeneous Classification. Intelligent Data Engineering and Automated Learning IDEAL2007, Lecture Notes in Computer Science, Springer Berlin Heidelberg .
Chandrasekaran, M.; Narayanan, K.U.; Phishing email detection based onstructural properties; 2006; pp. 1–7.
Fette, I.; Sadeh, N.T.; A.. Learning to Detect Phishing Emails, InProceedings of the 16th International Conference on World Wide Web, WWW ’07,New. (Accessed 2007, 18, 649–656.
He, M.; Horng, S.J.; Fan, P.; Khan, M.K.; Run, R.S.; Lai, J.L.; andSutanto Chen, R.J.; A.. An efficient phishing webpage detector. Expert Systems withApplications 2011, 38, 12018–12027.
Bergholz, A.; Beer, J.D.; Glahn, S.; Moens, M.F.; Paaß, G.S.; S.. Newfiltering approaches for phishing email. Journal of Computer Security 2010, 18, 7–35.
Abu-Nimeh, S.; Nappa, D.; Wang, X.N.; S.. A Comparison of Machine LearningTechniques for Phishing Detection; Available: New York, NY, USA, ACM,pp. 60–69, [online, 2007].
DOI: https://doi.org/10.29099/ijair.v3i1.83
________________________________________________________
International Journal Of Artificial Intelligence Research
Organized by: Departemen Teknik Informatika STMIK Dharma Wacana
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
phone. +62725-7850671
Fax. +62725-7850671
Email: info@ijair.id | internationaljournalair@gmail.com | herinurdiyanto@ieee.org
IJAIR is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.