International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol. 8, No. 2, December 20224, pp. 231-247

Optimizing Text Correction For Voice Based 10T Smart
Building Virtual Assistants

Maulana Ahmad As Shidigi %, Mokh. Sholihul Hadi 2", Aji Prasetya Wibawa #* , Mhd. Irvan ®*

2 Department of Electrical Engineering and Informatics, Universitas Negeri Malang, Indonesia
bGraduate School of Information Science and Technology, The University of Tokyo Tokyo, Japan

! Maulana.ahmad.2105348@students.um.ac.id; 2 “mokh.sholihul.ft@um.ac.id; ®aji.prasetya.ft@um.ac.id, *irvan@yamagula.ic.i.u-tokyo.ac.jp
* corresponding author

ARTICLE INFO ABSTRACT

The integration of Virtual Assistants (VAs) within Smart Building
Article history Internet of Things (loT) ecosystems is increasingly critical, particularly
Eec‘?"’zdailMDeczzoozzf for interpreting user commands via Automatic Speech Recognition
e ol o (ASR). This paper presents an in-depth performance analysis of text
pted 21 Oct 2024 . N . . .
correction algorithms on a Raspberry Pi 4—a cost-effective and widely
used computing solution in smart building applications. Due to the
Keywords absence of GPU acceleration for Python on ARM architecture, a
\T/‘f:ugl"::;:;rr‘n specialized dataset was developed to benchmark algorithmic
Internet of Things performance, focusing on correction times and accuracy. Our study
utilized a near-real-world experimental setup, deploying Docker
containers to simulate IoT MQTT brokers, a Smart Building Platform,
and Rasa for dialogue management. Among the algorithms tested—Edit
distance, Jaccard, FuzzPartialRatio, FuzzSortRatio, MLE, and Norvig
Spell—the Edit distance and Norvig Spell emerged as leaders in
accuracy, achieving an 84% success rate in text correction. Notably, the
Edit distance algorithm demonstrated superior speed, vital for real-time
processing demands. The Fuzz Sort Ratio algorithm distinguished itself
with the fastest correction time at 31.6 milliseconds, albeit with a slight
compromise on accuracy, attaining a 79% success rate. Consequently,
the Edit distance algorithm is recommended for applications where
accuracy and response time are paramount, while the Fuzz Sort Ratio is
preferable for scenarios where speed is the overriding priority. This
research paves the way for future exploration into the computational
impacts of these algorithms and the exploration of neural network-based
methods to further enhance text correction capabilities in smart building
automation systems.

1. Introduction

The building has been an essential element in human life since ancient times. Several decades
ago, humans needed security from damage and earthquake destruction. However, in today's world,
users seek more than just security[1]; they desire a quality-of-life experience[2]. This includes the
ability for systems to automatically control HVAC (Heating, Ventilation, Air Conditioning) systems,
lighting, electricity, energy, and access control[3]. Researchers have coined the terms "Smart
Building" or "Intelligence Building" to describe the research and products related to these
innovations. This concept emerged in the 1980s in the United States, where the Intelligent Building
Institution explained the need for a system that integrates various systems to coordinate with each
other, aiming to maximize operating cost savings, improve return on investment (ROI), and provide
flexibility in management[4], [5]. The realization of Smart Buildings is made possible by the

d"’ 10.29099/ijair.v8i1.1085 £ nttpu/rijair.id € jurnal.ijair@gmil.com

http://dx.doi.org/10.29099/ijair.v8i1.1085
http://ijair./
mailto:jurnal.ijair@gmail.com

International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol.8, No. 2, December 202, pp. 231-247
C—

Internet of Things (1oT), which is a technology development from machine-to-machine (M2M)
communications, enabling machines such as HVAC equipment, lighting, and electricity to
communicate via the internet[6]. The demand for such technology has been growing steadily and is
predicted to have a compound annual growth rate (CAGR) of around 13% until 2030, with the
number of devices expected to increase from 8.6 billion in 2022 to 29 billion in 2030[7].

Currently, Smart Buildings not only utilize Graphical User Interfaces (GUI) as Human Machine
Interfaces (HMI), but they also leverage Voice User Interfaces (VUI) [8], [9] , which have been
gaining popularity year after year. Unfortunately, ASR is reliable because running on server which
is has a lot of resource to do that with highly accurate. The journey of ASR began in the 1950s with
the Three Bell Labs Researchers who designed an Automatic Speech Recognition (ASR) system
called Audrey, which could recognize digits from 0 to 9. In 1962, IBM demonstrated Shoebox, a
system capable of understanding up to 16 spoken words in English. In 1971, IBM created the
Automatic Call Identification system [10] In the 1970s, DARPA conducted Speech Understanding
Research with a vocabulary size of one thousand words. Additionally, they developed the Hidden
Markov Model (HMM)[11] as an advancement of the Markov Chain applied to ASR. In the 1980s,
an IBM team developed the Tangora voice-activated typewriter, utilizing HMM technology. In
short, In the development of ASR, in 1990, the Sphinx-I11 ASR system developed by CMU became
the first to recognize continuous speech with a wide vocabulary[12]. The application of Deep
Neural Networks (DNN) in the early 2000s [13] gained significant attention in the ASR field, as
DNNs have high learning capacity and can model complex nonlinear relationships in speech data.
The "end-to-end" approach and Attention-based ASR models began to be used in the mid-2010s,
allowing for simultaneous learning of all components of speech recognition and yielding better
overall speech recognition performance[14]. Even though performance accuracy and error rates are
getting better and better every year, a super high-powered computational engine should be
available[15], [16]. Despite user acquisitions each year grow rapidly. It still needs a privacy
concern especially Europe standard GDPR became harder to entry[17], [18]. One solution that
handy is running all of that inside the machine, not go to outside server [19]. This is why speech
recognition on our devices needs a lot of storage and fast processing, or the users must make up for
the fact that the lowering the quality of recognition. The alternative that recognizes inside the
machine but increasing accuracy with fast correction algorithms[18].

The evolution of Smart Buildings, supported by the Internet of Things (loT), has brought a
significant shift from traditional structures to ones that offer a comprehensive quality-of-life
experience. This research highlights the strength of Smart Buildings in their ability to integrate
various systems—such as HVAC, lighting, and access control—to optimize operational costs,
improve ROI, and offer management flexibility. The deployment of Voice User Interfaces (VUI)
through Automatic Speech Recognition (ASR) systems presents a modern approach to Human-
Machine Interfaces, marking a notable advancement from the early days of digit recognition to
today's sophisticated end-to-end models with attention mechanisms.

However, the research also reveals certain weaknesses. While ASR systems have improved,
their reliance on powerful server-side resources for high accuracy poses challenges, especially
considering the privacy concerns under regulations like Europe's GDPR. This necessitates a move
towards on-device processing to safeguard user privacy, which in turn demands substantial storage
and computational speed on local machines. Herein lies a trade-off: ensuring user privacy and data
security may result in compromised recognition quality unless offset by rapid and precise text
correction algorithms[20]-[24].

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based loT Smart Building Virtual Assistants)

ISSN 2579-7298 International Journal of Artificial Intelegence Research
Vol.8, No. 2, December 202, pp. 231-247

N - |
2. Method

In this study, we aimed to evaluate the performance of text correction for smart building virtual
assistants. Raspberry Pi 4 is used for this study to measure how fast the algorithms perform in low-
cost computing devices Despite the SoC (single-on-chip) there is GPU available which
theoretically can use GPU acceleration, none of the python itself or python libraries the including
Tensorflow doesn’t support GPU acceleration for ARM architecture [25] which is cannot utilizing
parallelism. That’s why this research calculates the time as performance.

We collected a dataset of utterances related to smart building commands, where each record
contained the original command, an incorrect version of the command, and the corrected output
from different correction algorithms. These included methods[26], [27] such as Edit distance
(Levenshtein) [28], [29],Jaccard[30], [31], FuzzPartialRatio[32], [33], FuzzSortRatio, MLE[34],
and Norvig Spell algorithm[35]. For each correction algorithm, we recorded the correction time,
the corrected command, and whether the correction was correct or not.

host machine

Text correction Smart Building Dialogue
N loT broker
algorithm Platform management

Bin and libs of Bin and libs of Bin and libs of Bin and libs of
python and it's MQTT and it's | |platform and it's Rasa and it's
dependencies dependencies dependencies dependencies

Docker Engine

Host Operating System

Fig. 1. Edge Computer architecture

Existing D
System

Microphone Speaker

Automatic.
Interface App Speech
Recognition

Building Smart Building Dialogue / :
Management Virtual « Command H
Platform service < Manager '
) MQTT loT : Toxt
loT Device -to- : g
broker ;Em mh Similarity
peec correction

Fig. 2. Voice-based Virtual Assistant for Smart Building

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based 10T Smart Building Virtual Assistants)

International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol.8, No. 2, December 202, pp. 231-247
L —

2.1. Experiment Scenario

This experiment contains a text correction application using Docker containers[36] on a Raspberry
Pi 4 (see figure 1), along with other dockerized applications is running to make sure such as an IoT
MQTT broker which function as broker between 10T device and the platform[37] , a Smart
Building Platform as loT devices manager[38], and Rasa dialogue management [39] as interface
between user and smart building platform. Docker containers offer numerous benefits, including
the ability to isolate each application, thereby preventing conflicts between libraries and binary
dependencies [40]. This ensures the smooth operation and compatibility of the system's various
components. If look at the whole system (see figure 2), there are a lot of components in a voice-
based virtual assistant for smart building in an existing system; such as a building management
platform that has a database, 10T broker service and its devices, automatic speech recognition,
dialogue management, and text-to-speech; and an additional system for this research, which is text
similarity correction system.

A
Y

Speech N Text Dialogue
Recognition Similarity Management

User Mic

¢
-

Devices

Fig. 3.Text Similarity Process Location

Text Similarity occurs after the user's voice has been converted to string text by speech recognition
(see figure 3). The output of the Text Similarity function is the corrected string text which is
required for dialogue management to ensure the string is matched. After a match has been made,
the dialogue management will instruct the 10T device via Smart Building Platform to turn on or off
depending on the command. The analysis phase of the text similarity process involved evaluating
the accuracy and speed of each correction algorithm. We measured accuracy by comparing the
corrected command against the original command and determining the percentage of successful
corrections. Speed was evaluated based on the recorded correction time. In order to improve the
efficiency of the entire system's process (see figure 4), the system only performs text similarity
correction if the query didn't match after being fed to the dialogue manager.

Text Similarity

. [—N
correction process

User's string query Dialogue manager
from Speech —> 9 ge
parse the query string

recognition

Fig. 4. Text Similarity execution Algorithm

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based loT Smart Building Virtual Assistants)

ISSN 2579-7298 International Journal of Artificial Intelegence Research
Vol.8, No. 2, December 202, pp. 231-247

N
2.2. Text correction method

The first step is the registered devices, and their corresponding commands are recorded and stored
in a dictionary within the text correction system. This dictionary serves as a reference for the
system to recognize and correct any input that corresponds to a device and it’s synonym and
command. By maintaining this dictionary, the text correction system can accurately identify and
correct user queries related to specific devices or commands. And then when a user enters a string
query command, it is passed through each algorithm within the text correction system. Before
applying the algorithms, a preprocessing step is performed on the query. This preprocessing
includes converting the query to lowercase using the lower () function and tokenizing it by
whitespace by using tokens = nltk.word tokenize (user query) . These steps help
standardize the input and ensure consistency in the text correction process. and then the next step is
correcting token by token and match it within the dictionary, if there is a closed word between
every token user_query and the dictionary, the algorithm will return the correction instead. In every
user query, before and after the correction method the time will be recorded to measure how fast
the algorithm is. This process is based on pseudocode below.

dictionary = ["on", "off", "fan", "tv", "television", "PC", "lamp", ...]

user query = # String var
user query = user query.lower() # Convert query to lowercase
tokens = nltk.word tokenize (user query) # Tokenize the user query string
start time = time.time() # Start measuring time
corrected tokens = [] #create a new array of text
for token in tokens:
if token in ["."™, M™,", "W, owpw owew owew Uthe"]:
corrected tokens.append(token)
continue
result = text_correction(token)
corrected tokens.append(result)
elapsed time = time.time() - start time
corrected sentence = " ".join(corrected tokens)

Table 1. Pseudocode text correction process

2.2.1. Edit Distance

The edit distance[41]-[43] is a metric that measures the dissimilarity or similarity of two
strings[44]. It quantifies the minimal number of operations required to transform one string into
another, where each operation may involve the insertion, deletion, or substitution of a single
character. The edit distance algorithm evaluates each character in both strings and computes the
cost of transforming one into the other. Typically, 1 is assigned to the cost of each operation. The
algorithm seeks to identify the sequence of operations with the lowest total cost. A common
method for calculating the edit distance is based on dynamic programming. It requires constructing
a matrix called the edit distance matrix, where each cell represents the cost of transforming a prefix
of one string into a prefix of the other string. The matrix is initialized with the base cases and then
iteratively filled in using the following recurrence relation:

a. |If the current characters in both strings are identical, the current cell's cost is
identical to the previous cell's cost.

b. If the characters are different, the cost in the current cell is the minimum of the
cost in the left cell (corresponding to deletion), the cost in the upper cell

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based 10T Smart Building Virtual Assistants)

International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol.8, No. 2, December 202, pp. 231-247
— S ——

(corresponding to insertion), or the cost in the diagonal cell (corresponding to
substitution).

c. Once the edit distance matrix is constructed, the minimum cost, which is in the
bottom-right cell of the matrix, represents the edit distance between the two
strings. This value indicates the minimum number of operations required to
transform one string into the other.

For the pseudocode, see table 2.

Table 2. Pseudocode Edit distance

def calculate edit distance(stringl, string2):
m = len(stringl)
n = len(string2)

Create a matrix to store the edit distances
distances = [[0] * (n + 1) for in range(m + 1)]

Initialize the first row and column of the matrix
for i in range(m + 1):
distances[i] [0] =
for j in range(n + 1):
distances[0][]] =

i
3
Calculate the edit distances

for i in range(l, m + 1):
for j in range(l, n + 1):

if stringl[i - 1] == string2[j - 1]:
distances[i][]j] = distances[i - 1]1[37 - 1]

else:
substitute cost = distances([i - 1][j - 1] + 1
delete cost = distances[i - 1]1[j] + 1
insert cost = distances[i][j - 1] + 1
distances[i][J] = min(substitute cost, delete cost,

insert cost)
return distances[m] [n]

def editdistance function (text):

outcomes = []

distances = [(edit distance (lowercase text, word), word) for word
in spellings_series]

closest = sorted(distances) [:3]

outcomes.append(closest)
return outcomes[0] [0][1], outcomes[0][0][0]

2.2.2. Jaccard Index

The Jaccard similarity coefficient[45], also known as the Jaccard index, measures the overlap
between two sets by computing the ratio between their intersection and union sizes. Given two sets
A and B, the Jaccard index (J(A, B)) is calculated as the intersection cardinality of A and B divided
by the union cardinality of A and B (J(A, B) =]A N B|/|A U B|). The resultant coefficient ranges
from 0 to 1, with O indicating no overlap between the sets and 1 indicating perfect similarity. In
situations when the presence or absence of elements in sets is of vital importance, the Jaccard index
EE—— |

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based loT Smart Building Virtual Assistants)

ISSN 2579-7298 International Journal of Artificial Intelegence Research
Vol.8, No. 2, December 202, pp. 231-247

EE— |
is especially useful. It is notably useful for tasks involving set-based representations, such as
document similarity, recommendation systems, and clustering. The Jaccard index, unlike other
similarity indices, only evaluates set membership and ignores the frequency or order of elements
within sets. This makes it resistant to fluctuations in set sizes and excellent for processing sparse
and high-dimensional data. In addition, the Jaccard index is computationally efficient because it
only requires the calculation of set intersections and unions. For pseudocode see table 3.

Table 3. Jaccard Index Pseudocode

def jaccard(string, gram number) :
outcomes = []

for entry in entries:

startwith = spellings series.str.startswith(entry[0])
spellings = spellings series[startwith]
distances = []

for word in spellings:
wordgram = nltk.ngrams (word, gram number)
entrygram = set (nltk.ngrams(entry, gram number))
union = entrygram.union (set (wordgram))

if len(union) ==
continue

distance = jaccard distance(entrygram, set (wordgram))
distances.append((distance, word))

closest = sorted(distances) [:1]
outcomes.append ([match for match in closest])

if len(outcomes) == 0 or len(outcomes[0]) == 0:
return entry, O

else:
return outcomes[0][0][1], outcomes[0][0][0]

2.2.3. TheFuzz (FuzzyWuzzy)

The popular Python module "thefuzz"[32], [33] (formerly known as "fuzzywuzzy") provides fuzzy
string matching functionality. It provides a variety of string similarity calculation methods,
enabling the approximate matching and correction of text data. Methods such as Partial Ratio, and
Token Sort Ratio are supported and used in this research.

a. Partial Ratio
This method considers the best matching substring between the two strings. Instead
of comparing the entire strings, it identifies the most similar substring in both
strings and calculates the ratio of similarity for that substring. Like the simple
ratio, this ratio is also scaled to a number between 0 and 100. For pseudocode, see
table 4.

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based 10T Smart Building Virtual Assistants)

International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol.8, No. 2, December 202, pp. 231-247

Table 4. Jaccard Index Pseudocode

def partial ratio(sl, s2):

sl, s2 = utils.make type consistent(sl, s2)
if len(sl) <= len(s2):

shorter = sl

longer = s2
else:

shorter = s2

longer = sl

m = SequenceMatcher (None, shorter, longer)
blocks = m.get matching blocks ()

scores = []
for block in blocks:
long start = block[1l] - block[0] if (block[1l] - block[0]) > O
else O
long _end = long_start + len(shorter)
long substr = longer[long start:long end]
m2 = SequenceMatcher (None, shorter, long substr)

r = m2.ratio()

if r > .995:
return 100

else:
scores.append (r)

return utils.intr (100 * max(scores))

b. Sort Ratio
This method tokenizes the strings into words, sorts the words alphabetically, and
then joins them back into a string. The ratio between these processed strings is then
calculated. This method is useful when comparing strings where the word order
might not be the same but the same words are present. For pseudocode, see table 5.

Table 5. Sort Ratio Pseudocode

def process_and sort(s, force ascii, full process=True) :

ts = utils.full process(s, force ascii=force ascii) if full process
else s

tokens = ts.split()

sorted string = " ".join(sorted(tokens))

return sorted string.strip()

def token sort(sl, s2, partial=True, force ascii=True,
full process=True):

sortedl = process_and sort(sl, force ascii,
full process=full process)

def token sort ratio(sl, s2, force ascii=True, full process=True):
return token sort(sl, s2, partial=False, force ascii=force ascii,
full process=full process)

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based loT Smart Building Virtual Assistants)

ISSN 2579-7298 International Journal of Artificial Intelegence Research
Vol.8, No. 2, December 202, pp. 231-247

N
2.2.4. Maximum Likelihood Estimation

MLE [46]in short is a statistical method widely used for estimating the parameters of a
probability distribution based on observed data. In the context of natural language processing and
text correction[47]. The main objective of MLE is to find the parameter values that maximize the
likelihood of observing the given data. It starts by compiling a list of correct spellings from user
inputs and commands. This list is then converted into a string representation. The training data is
generated by tokenizing the string and creating n-grams, which are contiguous sequences of n
tokens. An MLE model is then initialized, specifying the desired order of the model. The model is
trained on the generated training data, using the MLE algorithm to estimate the probability
distribution of word sequences.

The predict next chars function takes an input string and aims to predict the most
likely next words based on the trained MLE model. It utilizes a context-based approach, where the
input string is used to determine the initial context for prediction. The function iterates a specified
number of times, generating words using the MLE model's generate method. Each generated word
is appended to the list of predicted characters until a period ('.") is encountered, indicating the end
of a sentence or a significant break in the predicted sequence. The function returns the input string
concatenated with the predicted characters, forming a corrected and extended version of the
original input. For the pseudocode, see table 6.

Table 6. MLE Pseudocode
Training phase
correct spellings mle = [...]
correct spellings string = '.'.join(correct spellings mle)
tokens = list (correct spellings string)
n =3
train data = list(ngrams (tokens, n))

model = MLE (n)

model.fit ([train data], vocabulary text=tokens)

Text correction phase

def predict next chars(input str, num word=10, n=2):
original input str = input str
Prepare the context
if len(input str) >= n:

input str = input str[:n-1]
context = tuple (input str)
context = ('.',) + context

predicted chars = []
for i in range(num word, 0, -1):

try:
next chars = model.generate (num words=num word-i,
text seed=context)
if '.' in next chars:
idx = next chars.index('."')
predicted chars.extend(next chars[:idx])
break
predicted chars.extend(next chars)
context = (context + tuple(next chars)) [-(n-1):]
except:
continue

if not predicted chars:
return input str

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based 10T Smart Building Virtual Assistants)

International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol.8, No. 2, December 202, pp. 231-247

return input str + ''.join(predicted chars) |

2.2.5. Norvig Algorithm

The Norvig algorithm[48], [49], developed by Peter Norvig, is a widely used approach for text
correction and spell checking. It employs statistical analysis and probabilistic models to suggest the
most likely spelling corrections for misspelled words. The algorithm is based on the principle that
the correct spelling of a word is the one that has the highest probability given the context in which
it appears.

The algorithm prepares training data. This corpus extracts words, normalizes them to lowercase,
then calculates their frequencies using a Counter object. Probabilistic models are based on
frequency distributions. The system uses potentially misspelled words to fix text. It suggests
corrections within one or two edit distances from the original word. The algorithm generates
candidates using known(), editsl(), and edits2(). The known() function filters candidate
adjustments by checking the training corpus frequency distribution. Only valid words are
considered for repairs. The edits1() function generates corrections one edit from the original word,
considering deletions, transpositions, replacements, and insertions. Edits2() adds two-edit-distance
corrections to edits1(). The algorithm uses the P(word) function to determine the most likely
spelling fix. This function assesses word likelihood based on training corpus frequency. The most
likely spelling correction for a term is chosen. For pseudocode, see table 7.

Table 7. Norvig Pseudocode
function correct (word) :
candidates = (known (editsO (word)) or known (editsl (word)) or
known (edits2 (word)) or [word])

return max (candidates, key=language model probability)

function known (words) :
return set(w for w in words if w in language model)

function editsO (word) :
return {word}

function editsl (word) :

letters = 'abcdefghijklmnopgrstuvwxyz'

splits = [(word[:1i], word[i:]) for 1 in range(len(word) + 1)]
deletes = [L + R[1:] for L, R in splits if R]

transposes = [L + R[1] + R[O] + R[2:] for L, R in splits if len(R)>1]
replaces = [L + ¢ + R[1:] for L, R in splits if R for c in letters]

inserts = [L + ¢ + R for L, R in splits for c in letters]
return set (deletes + transposes + replaces + inserts)

function edits2 (word) :
return {e2 for el in editsl (word) for e2 in editsl (el)}

3. Results and Discussion

Within the course of this study, we analyzed and compared a humber of text correction techniques,
including Edit Levenshtein, Jaccard, FuzzPartialRatio, FuzzSortRatio, Maximum Likelihood
Estimation SMLE), and Norvig. Each of these approaches was evaluated under identical settings,

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based loT Smart Building Virtual Assistants)

ISSN 2579-7298

International Journal of Artificial Intelegence Research

Vol.8, No. 2, December 202, pp. 231-247

and their performance was evaluated based on the accuracy and speed of their corrections. To test
the algorithms' ability to recognize and rectify faults, they were exposed to a variety of texts with
errors that were inserted on purpose. The accuracy of each algorithm's adjustments were then
compared to establish the most trustworthy algorithm, with a focus on those that consistently
produced correct answers across all sentences. Alongside the accuracy of each algorithm, its speed
was also tested. In real-time applications where response speed is critical, this is a crucial factor.
The execution duration of each algorithm was meticulously documented, enabling us to determine
which of these methods would provide the ideal mix of speed and accuracy.

3.1. Correctness

Every algorithm's accuracy is determined by comparing the ground truth of the
sentences with the modified sentences. Upon closer inspection of the data in table 8.
except MLE, it becomes clear that the algorithm's performance varies considerably
based on the type of text and the nature of the errors inside it. Each strategy appears to
handle the issue of vocabulary similarity, particularly when words in incorrect
sentences exhibit a similar appearance to their correct counterparts despite their

meanings deviating substantially.

Table 8. Correctness result
)) Norvig
Edit Jaccard Fuzz Partial fuzz sort result
Distances Index Ratio ratio
84%
84% 11% 37% 79% 0%

Taking the Edit Levenshtein algorithm as a case in point, it's clear that it has
difficulties dealing with scenarios where the edit distance is high. The 'edit distance' is
a measure of the dissimilarity between two strings, computed as the minimum number
of single-character edits (insertions, deletions, or substitutions) required to change one
word into the other. For instance, in the case of "disassemble the back door" and
"disable the back door", the algorithm mistakenly corrects "disassemble" to "disable
the lock", reflecting its struggle with the multiple transformations needed to go from
the incorrect to the correct sentence. The Jaccard algorithm, FuzzSimpleRatio,
FuzzPartialRatio, and FuzzSortRatio display similar challenges. They are each slightly
confused by the difficulty of lexically related but semantically dissimilar terms. In the
wrong statement "oven the gate,"” for instance, the algorithms mistakenly adjust "oven"
to a range of other words, none of which is the proper "open." This exemplifies the
possible dangers of an excessive dependence on lexical similarity, which can lead to
problems when the correct and erroneous words have similar spellings but separate
meanings. Meanwhile, the MLE (Maximum Likelihood Estimation) algorithm seems
to encounter unique challenges. Although it is a powerful method used widely in
statistical estimation, its limitations are brought to light in this analysis. In all the tested
sentences, it didn't provide a single correct correction, suggesting that it might not be
as suited to text correction as the other methods, or it might need additional fine-tuning
or adjustments to deal with the unique challenges of this task. Norvig's approach,
which is commonly considered as a sophisticated spell correction algorithm, does not
emerge as the clear victor either. Although "unlock the back door" is changed
appropriately, "turn on the tv" and "open the gate" are not. This demonstrates that even
advanced algorithms may be misled by words with similar spelling but distinct
meanings, such as "oven" and "open.", for sample result, see table 9.

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based 10T Smart Building Virtual Assistants)

International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol.8, No. 2, December 202, pp. 231-247

— B]
Table 9. Sample correction result
Ground User’s Corrected by Algorithm
Truth Query Edit Jaccard FuzzPartial FuzzSort MLE Norvig
Ratio Ratio
turn on turn on turn on television off turn turn on turn off the turn on
the tv. the tea. the tv. the television. television the the gate. tv. the the.
gate.
turn off turn off turn off television off turn off the turn off ter off the turn off
the light. the flight. the light. the fan. light. the light. fan. the light.
lock the look the lock the lamp the unlock the lock the laptop the lock the
door. door. door. desktop. door. door. desktopen. door.
unlock unluck unlock unlock the unlock the unlock unlock the unlock
the door. thedoor. the door. desktop. door. the door. dision. the door.
turn on turn on turn on television off turn turn on ter open turn on
the lamp. the lump. the lamp. the lamp. television the the lamp. the lock. the lamp.
lamp.
lock the look the lock the lamp the unlock the lock the laptop the lock the
windows. windows. windows. windows. windows. windows. windoor. windows.
3.2. Speed
Due to the emphasis on efficiency in computing, speed should be examined to
determine whether algorithms are viable for low-cost computers in real-time to achieve
a greater user experience while yet obtaining more precision.
time execution in ms
Norvig
|
MLE
I
Fuzz Sort Ratio
.
Fuzz Partial Ratio
-
Jaccard
.
edit levenstein
]
0 100 200 300 400 500
max min M average
Fig. 5.Algorithm Time Execution
Based on figure 4, we disregard the MLE result as it contains no accurate phrases.
However, if we compare this speed test with the accuracy based on table 5, edit
Levenshtein emerges as the winner for selecting the fastest and most accurate
algorithm. If the goal is to have a quicker method than Edit Levenshtein, but with a
lesser expectation of accuracy, the Fuzz Sort Ratio algorithm appears as a possible
option. This method has an average execution time of 31.6 milliseconds, making it the
quickest of all evaluated algorithms. However, the precision of the adjustments suffers
because of this increased speed. Based on Table 5, the Fuzz Sort Ratio algorithm has
an accuracy percentage of 79%, which, while high, is somewhat lower than the Edit
EE—— |

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based loT Smart Building Virtual Assistants)

ISSN 2579-7298 International Journal of Artificial Intelegence Research
Vol.8, No. 2, December 202, pp. 231-247
EE—
Levenshtein algorithm's correctness rate of 84%. This shows that while the Fuzz Sort
Ratio approach may provide results more quickly than the Edit Levenshtein algorithm,
it may also produce more mistakes.

4.Conclusion

In conclusion, each method for text correction evaluated in this study has its own benefits and
drawbacks. The selection of a suitable algorithm is significantly influenced by the unique needs and
limits of a given work, with a focus on the relevance of speed and accuracy. The Edit Levenshtein
method has the greatest percentage of accuracy (84%), tied with the Norvig algorithm. This makes
these two algorithms ideally suited for jobs requiring a high level of precision. However, the average
execution time of the Norvig method (315.9 ms) was much greater than that of Edit Levenshtein
(74.5 ms), making it less suitable for real-time applications. The method with the quickest average
execution time (31.6 ms) was the Fuzz Sort Ratio algorithm. Its accuracy rate (79 %) was somewhat
lower than that of Edit Levenshtein but is still substantial. This makes Fuzz Sort Ratio a desirable
option in cases when speed is critical, and a small accuracy sacrifice is acceptable.

Examine the following ideas considering the study's limitations and future research. First, this
study focused on execution speed and accuracy, but future research may incorporate processor and
memory consumption to further assess algorithm performance. Neural network-based text correction
techniques might benefit from rapid improvements in machine learning and natural language
processing. These methods may use artificial neural networks to enhance speed and accuracy.

Acknowledgment

This research is funded by the Ministry of Education, Republic of Indonesia with funding
program Graduate research scheme - research master thesis programme with registration number
140/E5/PG.02.00.PL/2023.

References

[1] A.H.Buckman, M. Mayfield, and S. B. M. Beck, “What is a Smart Building?”, doi:
10.1108/SASBE-01-2014-0003.

[2] F. Siu, D. Chan, D. Clements-Croome, and T. Yang, “Editorial: smart buildings,”
https://doi.org/10.1080/17508975.2021.1867335, vol. 13, no. 1, pp. 1-3, 2021, doi:
10.1080/17508975.2021.1867335.

[3] J. King and C. Perry, “Smart Buildings: Using Smart Technology to Save Energy in
Existing Buildings,” 2017.

[4] A. Ghaffarianhoseini et al., “What is an intelligent building? Analysis of recent

interpretations from an international perspective,”
https://doi.org/10.1080/00038628.2015.1079164, vol. 59, no. 5, pp. 338-357, Sep. 2015,
doi: 10.1080/00038628.2015.1079164.

[5] J. King and C. Perry, “Smart Buildings: Using Smart Technology to Save Energy in
Existing Buildings,” 2017.

[6] R. Minerva, A. Biru, and D. Rotondi, Towards a definition of the Internet of Things (10T),
Revision 1. IEEE Internet Initiative, 2015. Accessed: Apr. 05, 2023. [Online]. Available:
https://iot.ieee.org/images/files/pdf/IEEE_loT_Towards_Definition_Internet_of Things_Re
visionl 27MAY15.pdf

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based 10T Smart Building Virtual Assistants)

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol.8, No. 2, December 202, pp. 231-247
L —

L. S. Vailshery, “IoT connected devices worldwide 2019-2030,” Statista. Accessed: Apr.
05, 2023. [Online]. Available: https://www.statista.com/statistics/1183457/iot-connected-
devices-worldwide/

F. Goossens, “Designing a VUI — Voice User Interface.” Accessed: Jun. 19, 2020. [Online].
Available: https://www.toptal.com/designers/ui/designing-a-vui

Mokh. S. Hadi, M. A. A. Shidiqi, I. A. E. Zaeni, M. A. Mizar, and M. Irvan, “Voice-Based
Monitoring and Control System of Electronic Appliance Using Dialog Flow API Via
Google Assistant,” in 2019 International Conference on Electrical, Electronics and
Information Engineering (ICEEIE), IEEE, Oct. 2019, pp. 106-110. doi:
10.1109/ICEEIE47180.2019.8981415.

B. H. Juang and L. R. Rabiner, “Automatic Speech Recognition - A Brief History of the
Technology Development,” 2004. Accessed: May 03, 2023. [Online]. Available:
https://web.ece.ucsh.edu/Faculty/Rabiner/ece259/Reprints/354 LALI-ASRHistory-final-10-
8.pdf

L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, 1989, doi:
10.1109/5.18626.

H. A. Bourlard and N. Morgan, “Connectionist Speech Recognition,” Connectionist Speech
Recognition, 1994, doi: 10.1007/978-1-4615-3210-1.

X. Huang, J. Baker, and R. Reddy, “A historical perspective of speech recognition,”
Commun ACM, vol. 57, no. 1, pp. 94-103, Jan. 2014, doi: 10.1145/2500887.

B. Shillingford et al., “Large-Scale Visual Speech Recognition,” Proceedings of the Annual
Conference of the International Speech Communication Association, INTERSPEECH, vol.
2019-September, pp. 4135-4139, Jul. 2018, doi: 10.21437/Interspeech.2019-1669.

M. Pleva, J. Juhar, and A. S. Thiessen, “Automatic Acoustic Speech segmentation in Praat
using cloud based ASR,” Proceedings of 25th International Conference Radioelektronika,
RADIOELEKTRONIKA 2015, pp. 172-175, Jun. 2015, doi:
10.1109/RADIOELEK.2015.7129000.

S. Ghosh and O. Kristensson, “Neural Networks for Text Correction and Completion in
Keyboard Decoding”, Accessed: Oct. 20, 2023. [Online]. Available:
http://luululu.com/tweet/

T. Ke and K. Sudhir, “Privacy Rights and Data Security: GDPR and Personal Data Driven
Markets,” SSRN Electronic Journal, 2020, doi: 10.2139/ssrn.3643979.

A. Hard et al., “FEDERATED LEARNING FOR MOBILE KEYBOARD PREDICTION”,
Accessed: Oct. 20, 2023. [Online]. Available: https://www.tensorflow.org/lite/

Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data Security and Privacy in Cloud Computing,”
Int J Distrib Sens Netw, vol. 10, no. 7, p. 190903, Jul. 2014, doi: 10.1155/2014/190903.

J. Jo,J. Kung, S. Lee, and Y. Lee, “Similarity-Based LSTM Architecture for Energy-
Efficient Edge-Level Speech Recognition,” in 2019 IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED), IEEE, Jul. 2019, pp. 1-6. doi:
10.1109/ISLPED.2019.8824862.

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based loT Smart Building Virtual Assistants)

ISSN 2579-7298 International Journal of Artificial Intelegence Research

Vol.8, No. 2, December 202, pp. 231-247

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

E. Kalbaliyev and S. Rustamov, “Text Similarity Detection Using Machine Learning
Algorithms with Character-Based Similarity Measures,” 2021, pp. 11-19. doi: 10.1007/978-
3-030-74728-2_2.

N. Gahman and V. Elangovan, “A Comparison of Document Similarity Algorithms,” Apr.
2023.

D. D. Prasetya, A. Prasetya Wibawa, and T. Hirashima, “The performance of text similarity
algorithms,” International Journal of Advances in Intelligent Informatics, vol. 4, no. 1, p.
63, Mar. 2018, doi: 10.26555/ijain.v4i1.152.

W. H.Gomaa and A. A. Fahmy, “A Survey of Text Similarity Approaches,” Int J Comput
Appl, vol. 68, no. 13, pp. 13-18, Apr. 2013, doi: 10.5120/11638-7118.

Q. Li, J. Song, J. Ning, and J. Yuan, “The Detailed Data on the Neural Compute Stick
Acceleration Performance,” Proceedings - 2019 Chinese Automation Congress, CAC 2019,
pp. 4959-4962, Nov. 2019, doi: 10.1109/CAC48633.2019.8996841.

J. Lu, C. Lin, W. Wang, C. Li, and H. Wang, “String similarity measures and joins with
synonyms,” in Proceedings of the 2013 international conference on Management of data -
SIGMOD 13, New York, New York, USA: ACM Press, 2013, p. 373. doi:
10.1145/2463676.2465313.

M. Benard Magara, S. O. Ojo, and T. Zuva, “A comparative analysis of text similarity
measures and algorithms in research paper recommender systems,” in 2018 Conference on
Information Communications Technology and Society (ICTAS), IEEE, Mar. 2018, pp. 1-5.
doi: 10.1109/ICTAS.2018.8368766.

Y. S. Han, S. K. Ko, T. Ng, and K. Salomaa, “Closest substring problems for regular
languages,” Theor Comput Sci, vol. 862, pp. 144-154, Mar. 2021, doi:
10.1016/J.TCS.2020.09.005.

S. Konstantinidis, “Computing the edit distance of a regular language,” Inf Comput, vol.
205, no. 9, pp. 1307-1316, Sep. 2007, doi: 10.1016/J.1C.2007.06.001.

“(PDF) Modifying Jaccard Coefficient for Texts Similarity.” Accessed: Nov. 06, 2023.
[Online]. Available:
https://www.researchgate.net/publication/340267006_Modifying_Jaccard Coefficient for_
Texts_Similarity

I. Kabasakal and H. Soyuer, “A Jaccard Similarity-Based Model to Match Stakeholders for
Collaboration in an Industry-Driven Portal,” Proceedings 2021, Vol. 74, Page 15, vol. 74,
no. 1, p. 15, Mar. 2021, doi: 10.3390/PROCEEDINGS2021074015.

P.J. Rao, K. N. Rao, and S. Gokuruboyina, “An Experimental Study with Fuzzy-Wuzzy
(Partial Ratio) for Identifying the Similarity between English and French Languages for
Plagiarism Detection,” International Journal of Advanced Computer Science and

Applications, vol. 13, no. 10, pp. 393401, 2022, doi: 10.14569/1JACSA.2022.0131047.

G. A. Rao, G. Srinivas, K. V. Rao, and P. V. G. D. P. Reddy, “G APPA RAO, etal.: A
PARTIAL RATIO AND RATIO BASED FUZZY-WUZZY PROCEDURE FOR
CHARACTERISTIC MINING OF MATHEMATICAL FORMULAS FROM
DOCUMENTS A PARTIAL RATIO AND RATIO BASED FUZZY-WUZZY

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based 10T Smart Building Virtual Assistants)

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

International Journal of Artificial Intelligence Research ISSN 2579-7298
Vol.8, No. 2, December 202, pp. 231-247
L —

PROCEDURE FOR CHARACTERISTIC MINING OF MATHEMATICAL FORMULAS
FROM DOCUMENTS”, doi: 10.21917/ijs¢.2018.0242.

Y. Song et al., “Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation,” 2020.

Y. Kantor et al., “Learning to combine Grammatical Error Corrections,” ACL 2019 -
Innovative Use of NLP for Building Educational Applications, BEA 2019 - Proceedings of
the 14th Workshop, pp. 139-148, Jun. 2019, doi: 10.18653/v1/w19-4414.

N. Zhao et al., “Large-Scale Analysis of Docker Images and Performance Implications for
Container Storage Systems,” IEEE Transactions on Parallel and Distributed Systems, vol.
32, no. 4, pp. 918-930, Apr. 2021, doi: 10.1109/TPDS.2020.3034517.

C. S. Park and H. M. Nam, “Security Architecture and Protocols for Secure MQTT-SN,”
IEEE Access, vol. 8, pp. 226422-226436, 2020, doi: 10.1109/ACCESS.2020.3045441.

M. Wang, S. Qiu, H. Dong, and Y. Wang, “Design an IoT-based building management
cloud platform for green buildings,” Proceedings - 2017 Chinese Automation Congress,
CAC 2017, vol. 2017-January, pp. 5663-5667, Dec. 2017, doi:
10.1109/CAC.2017.8243793.

T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa: Open Source Language
Understanding and Dialogue Management,” Dec. 2017, [Online]. Available:
http://arxiv.org/abs/1712.05181

A. Krasnov, R. R. Maiti, and D. M. Wilborne, “Data Storage Security in Docker,”
Conference Proceedings - IEEE SOUTHEASTCON, vol. 2020-March, Mar. 2020, doi:
10.1109/SOUTHEASTCON44009.2020.9249757.

S. Aouragh, H. Gueddah, and A. Yousfi, “Adaptating the Levenshtein Distance to
Contextual Spelling Correction,” International Journal of Computer Science &
Applications, vol. 12, pp. 127-133, May 2015.

T. Anjali, T. R. Krishnaprasad, and P. Jayakumar, “A Novel Sentiment Classification of
Product Reviews using Levenshtein Distance,” in 2020 International Conference on
Communication and Signal Processing (ICCSP), IEEE, Jul. 2020, pp. 0507-0511. doi:
10.1109/ICCSP48568.2020.9182198.

L. S. Riza, F. Syaiful Anwar, E. F. Rahman, C. U. Abdullah, and S. Nazir, “Natural
Language Processing and Levenshtein Distance for Generating Error Identification Typed
Questions on TOEFL Journal of Computers for Society,” 2020.

V. ~I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and
Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb. 1966.

K. Rinartha and W. Suryasa, “Comparative study for better result on query suggestion of
article searching with MySQL pattern matching and Jaccard similarity,” 2017 5th
International Conference on Cyber and IT Service Management, CITSM 2017, Oct. 2017,
doi: 10.1109/CITSM.2017.8089237.

A. Carlson and I. Fette, “Memory-Based Context-Sensitive Spelling Correction at Web
Scale.”

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based loT Smart Building Virtual Assistants)

ISSN 2579-7298 International Journal of Artificial Intelegence Research
Vol.8, No. 2, December 202, pp. 231-247
E———
[47] C. Telvis, “Using text analysis techniques to build a predictive text model.” Accessed: May
22, 2023. [Online]. Available: https://rpubs.com/telvis/capstone_report 1

[48] M. Nither, “An In-Depth Comparison of 14 Spelling Correction Tools on a Common
Benchmark,” in Proceedings of the Twelfth Language Resources and Evaluation
Conference, N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi,
H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, and S. Piperidis, Eds.,
Marseille, France: European Language Resources Association, May 2020, pp. 1849-1857.
[Online]. Available: https://aclanthology.org/2020.1rec-1.228

[49] M. N. Samsuri, A. Yuliawati, and I. Alfina, “A Comparison of Distributed, PAM, and Trie
Data Structure Dictionaries in Automatic Spelling Correction for Indonesian Formal Text,”
in 2022 5th International Seminar on Research of Information Technology and Intelligent
Systems (ISRITI), IEEE, Dec. 2022, pp. 525-530. doi:
10.1109/I1SRIT156927.2022.10053062.

Maulana Ahmad As Shidigi et.al (Optimizing Text Correction For Voice Based 10T Smart Building Virtual Assistants)

	1. Introduction
	2. Method
	2.1. Experiment Scenario
	2.2. Text correction method
	2.2.1. Edit Distance
	2.2.2. Jaccard Index
	2.2.3. TheFuzz (FuzzyWuzzy)
	2.2.4. Maximum Likelihood Estimation
	2.2.5. Norvig Algorithm

	3. Results and Discussion
	4. Conclusion
	Acknowledgment
	References

