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1. Introduction  

The building has been an essential element in human life since ancient times. Several decades 
ago, humans needed security from damage and earthquake destruction. However, in today's world, 
users seek more than just security[1]; they desire a quality-of-life experience[2]. This includes the 
ability for systems to automatically control HVAC (Heating, Ventilation, Air Conditioning) systems, 
lighting, electricity, energy, and access control[3]. Researchers have coined the terms "Smart 
Building" or "Intelligence Building" to describe the research and products related to these 
innovations. This concept emerged in the 1980s in the United States, where the Intelligent Building 
Institution explained the need for a system that integrates various systems to coordinate with each 
other, aiming to maximize operating cost savings, improve return on investment (ROI), and provide 
flexibility in management[4], [5]. The realization of Smart Buildings is made possible by the 
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 The integration of Virtual Assistants (VAs) within Smart Building 

Internet of Things (IoT) ecosystems is increasingly critical, particularly 

for interpreting user commands via Automatic Speech Recognition 

(ASR). This paper presents an in-depth performance analysis of text 

correction algorithms on a Raspberry Pi 4—a cost-effective and widely 

used computing solution in smart building applications. Due to the 

absence of GPU acceleration for Python on ARM architecture, a 

specialized dataset was developed to benchmark algorithmic 

performance, focusing on correction times and accuracy. Our study 

utilized a near-real-world experimental setup, deploying Docker 

containers to simulate IoT MQTT brokers, a Smart Building Platform, 

and Rasa for dialogue management. Among the algorithms tested—Edit 

distance, Jaccard, FuzzPartialRatio, FuzzSortRatio, MLE, and Norvig 

Spell—the Edit distance and Norvig Spell emerged as leaders in 

accuracy, achieving an 84% success rate in text correction. Notably, the 

Edit distance algorithm demonstrated superior speed, vital for real-time 

processing demands. The Fuzz Sort Ratio algorithm distinguished itself 

with the fastest correction time at 31.6 milliseconds, albeit with a slight 

compromise on accuracy, attaining a 79% success rate. Consequently, 

the Edit distance algorithm is recommended for applications where 

accuracy and response time are paramount, while the Fuzz Sort Ratio is 

preferable for scenarios where speed is the overriding priority. This 

research paves the way for future exploration into the computational 

impacts of these algorithms and the exploration of neural network-based 

methods to further enhance text correction capabilities in smart building 

automation systems. 
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Internet of Things (IoT), which is a technology development from machine-to-machine (M2M) 
communications, enabling machines such as HVAC equipment, lighting, and electricity to 
communicate via the internet[6]. The demand for such technology has been growing steadily and is 
predicted to have a compound annual growth rate (CAGR) of around 13% until 2030, with the 
number of devices expected to increase from 8.6 billion in 2022 to 29 billion in 2030[7]. 

Currently, Smart Buildings not only utilize Graphical User Interfaces (GUI) as Human Machine 

Interfaces (HMI), but they also leverage Voice User Interfaces (VUI) [8], [9] , which have been 

gaining popularity year after year. Unfortunately, ASR is reliable because running on server which 

is has a lot of resource to do that with highly accurate. The journey of ASR began in the 1950s with 

the Three Bell Labs Researchers who designed an Automatic Speech Recognition (ASR) system 

called Audrey, which could recognize digits from 0 to 9. In 1962, IBM demonstrated Shoebox, a 

system capable of understanding up to 16 spoken words in English. In 1971, IBM created the 

Automatic Call Identification system  [10] In the 1970s, DARPA conducted Speech Understanding 

Research with a vocabulary size of one thousand words. Additionally, they developed the Hidden 

Markov Model (HMM)[11] as an advancement of the Markov Chain applied to ASR. In the 1980s, 

an IBM team developed the Tangora voice-activated typewriter, utilizing HMM technology. In 

short, In the development of ASR, in 1990, the Sphinx-II ASR system developed by CMU became 

the first to recognize continuous speech with a wide vocabulary[12]. The application of Deep 

Neural Networks (DNN) in the early 2000s [13] gained significant attention in the ASR field, as 

DNNs have high learning capacity and can model complex nonlinear relationships in speech data. 

The "end-to-end" approach and Attention-based ASR models began to be used in the mid-2010s, 

allowing for simultaneous learning of all components of speech recognition and yielding better 

overall speech recognition performance[14]. Even though performance accuracy and error rates are 

getting better and better every year, a super high-powered computational engine should be 

available[15], [16]. Despite user acquisitions each year grow rapidly. It still needs a privacy 

concern especially Europe standard GDPR became harder to entry[17], [18]. One solution that 

handy is running all of that inside the machine, not go to outside server [19]. This is why speech 

recognition on our devices needs a lot of storage and fast processing, or the users must make up for 

the fact that the lowering the quality of recognition. The alternative that recognizes inside the 

machine but increasing accuracy with fast correction algorithms[18]. 

The evolution of Smart Buildings, supported by the Internet of Things (IoT), has brought a 

significant shift from traditional structures to ones that offer a comprehensive quality-of-life 

experience. This research highlights the strength of Smart Buildings in their ability to integrate 

various systems—such as HVAC, lighting, and access control—to optimize operational costs, 

improve ROI, and offer management flexibility. The deployment of Voice User Interfaces (VUI) 

through Automatic Speech Recognition (ASR) systems presents a modern approach to Human-

Machine Interfaces, marking a notable advancement from the early days of digit recognition to 

today's sophisticated end-to-end models with attention mechanisms. 

However, the research also reveals certain weaknesses. While ASR systems have improved, 

their reliance on powerful server-side resources for high accuracy poses challenges, especially 

considering the privacy concerns under regulations like Europe's GDPR. This necessitates a move 

towards on-device processing to safeguard user privacy, which in turn demands substantial storage 

and computational speed on local machines. Herein lies a trade-off: ensuring user privacy and data 

security may result in compromised recognition quality unless offset by rapid and precise text 

correction algorithms[20]–[24]. 
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2. Method  

In this study, we aimed to evaluate the performance of text correction for smart building virtual 

assistants. Raspberry Pi 4 is used for this study to measure how fast the algorithms perform in low-

cost computing devices Despite the SoC (single-on-chip) there is GPU available which 

theoretically can use GPU acceleration, none of the python itself or python libraries the including 

Tensorflow doesn’t support GPU acceleration for ARM architecture [25] which is cannot utilizing 

parallelism. That’s why this research calculates the time as performance.  

We collected a dataset of utterances related to smart building commands, where each record 

contained the original command, an incorrect version of the command, and the corrected output 

from different correction algorithms. These included methods[26], [27] such as Edit distance 

(Levenshtein) [28], [29],Jaccard[30], [31], FuzzPartialRatio[32], [33], FuzzSortRatio, MLE[34], 

and Norvig Spell algorithm[35]. For each correction algorithm, we recorded the correction time, 

the corrected command, and whether the correction was correct or not. 

 

Fig. 1.  Edge Computer architecture 

 

Fig. 2.  Voice-based Virtual Assistant for Smart Building  
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2.1. Experiment Scenario 

This experiment contains a text correction application using Docker containers[36] on a Raspberry 

Pi 4 (see figure 1), along with other dockerized applications is running to make sure such as an IoT 

MQTT broker which function as broker between IoT device and the platform[37] , a Smart 

Building Platform as IoT devices manager[38], and Rasa dialogue management [39] as interface 

between user and smart building platform. Docker containers offer numerous benefits, including 

the ability to isolate each application, thereby preventing conflicts between libraries and binary 

dependencies [40]. This ensures the smooth operation and compatibility of the system's various 

components. If look at the whole system  (see figure 2), there are a lot of components in a voice-

based virtual assistant for smart building in an existing system; such as a building management 

platform that has a database, IoT broker service and its devices, automatic speech recognition, 

dialogue management, and text-to-speech; and an additional system for this research, which is text 

similarity correction system. 

 

Fig. 3. Text Similarity Process Location 

Text Similarity occurs after the user's voice has been converted to string text by speech recognition 

(see figure 3). The output of the Text Similarity function is the corrected string text which is 

required for dialogue management to ensure the string is matched. After a match has been made, 

the dialogue management will instruct the IoT device via Smart Building Platform to turn on or off 

depending on the command. The analysis phase of the text similarity process involved evaluating 

the accuracy and speed of each correction algorithm. We measured accuracy by comparing the 

corrected command against the original command and determining the percentage of successful 

corrections. Speed was evaluated based on the recorded correction time. In order to improve the 

efficiency of the entire system's process (see figure 4), the system only performs text similarity 

correction if the query didn't match after being fed to the dialogue manager. 

 

Fig. 4. Text Similarity execution Algorithm 
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2.2. Text correction method 

The first step is the registered devices, and their corresponding commands are recorded and stored 

in a dictionary within the text correction system. This dictionary serves as a reference for the 

system to recognize and correct any input that corresponds to a device and it’s synonym and 

command. By maintaining this dictionary, the text correction system can accurately identify and 

correct user queries related to specific devices or commands. And then when a user enters a string 

query command, it is passed through each algorithm within the text correction system. Before 

applying the algorithms, a preprocessing step is performed on the query. This preprocessing 

includes converting the query to lowercase using the lower() function and tokenizing it by 

whitespace by using tokens = nltk.word_tokenize(user_query). These steps help 

standardize the input and ensure consistency in the text correction process. and then the next step is 

correcting token by token and match it within the dictionary, if there is a closed word between 

every token user_query and the dictionary, the algorithm will return the correction instead. In every 

user query, before and after the correction method the time will be recorded to measure how fast 

the algorithm is. This process is based on pseudocode below.  

Table 1.  Pseudocode text correction process 

 

2.2.1. Edit Distance 

The edit distance[41]–[43]  is a metric that measures the dissimilarity or similarity of two 

strings[44]. It quantifies the minimal number of operations required to transform one string into 

another, where each operation may involve the insertion, deletion, or substitution of a single 

character. The edit distance algorithm evaluates each character in both strings and computes the 

cost of transforming one into the other. Typically, 1 is assigned to the cost of each operation. The 

algorithm seeks to identify the sequence of operations with the lowest total cost. A common 

method for calculating the edit distance is based on dynamic programming. It requires constructing 

a matrix called the edit distance matrix, where each cell represents the cost of transforming a prefix 

of one string into a prefix of the other string. The matrix is initialized with the base cases and then 

iteratively filled in using the following recurrence relation: 

a. If the current characters in both strings are identical, the current cell's cost is 

identical to the previous cell's cost. 

b. If the characters are different, the cost in the current cell is the minimum of the 

cost in the left cell (corresponding to deletion), the cost in the upper cell 

dictionary = ["on", "off", "fan", "tv", "television", "PC", "lamp", ...] 

user_query = # String var 

user_query = user_query.lower() # Convert query to lowercase 

tokens = nltk.word_tokenize(user_query) # Tokenize the user query string 

start_time = time.time() # Start measuring time 

corrected_tokens = []  #create a new array of text  

for token in tokens: 

    if token in [".", ",", "!", "?", ":", ";", "the"]: 

        corrected_tokens.append(token) 

        continue 

    result = text_correction(token) 

    corrected_tokens.append(result) 

elapsed_time = time.time() - start_time 

corrected_sentence = " ".join(corrected_tokens) 
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(corresponding to insertion), or the cost in the diagonal cell (corresponding to 

substitution). 

c. Once the edit distance matrix is constructed, the minimum cost, which is in the 

bottom-right cell of the matrix, represents the edit distance between the two 

strings. This value indicates the minimum number of operations required to 

transform one string into the other. 

For the pseudocode, see table 2. 

Table 2.  Pseudocode Edit distance 

 

2.2.2. Jaccard Index 

The Jaccard similarity coefficient[45], also known as the Jaccard index, measures the overlap 

between two sets by computing the ratio between their intersection and union sizes. Given two sets 

A and B, the Jaccard index (J(A, B)) is calculated as the intersection cardinality of A and B divided 

by the union cardinality of A and B (J(A, B) = |A ∩ B| / |A ∪ B|). The resultant coefficient ranges 

from 0 to 1, with 0 indicating no overlap between the sets and 1 indicating perfect similarity. In 

situations when the presence or absence of elements in sets is of vital importance, the Jaccard index 

def calculate_edit_distance(string1, string2): 

    m = len(string1) 

    n = len(string2) 

 

    # Create a matrix to store the edit distances 

    distances = [[0] * (n + 1) for _ in range(m + 1)] 

 

    # Initialize the first row and column of the matrix 

    for i in range(m + 1): 

        distances[i][0] = i 

    for j in range(n + 1): 

        distances[0][j] = j 

 

    # Calculate the edit distances 

    for i in range(1, m + 1): 

        for j in range(1, n + 1): 

            if string1[i - 1] == string2[j - 1]: 

                distances[i][j] = distances[i - 1][j - 1] 

            else: 

                substitute_cost = distances[i - 1][j - 1] + 1 

                delete_cost = distances[i - 1][j] + 1 

                insert_cost = distances[i][j - 1] + 1 

                distances[i][j] = min(substitute_cost, delete_cost, 

insert_cost) 

    return distances[m][n] 

 

def editdistance_function(text): 

    outcomes = [] 

    distances = [(edit_distance(lowercase_text, word), word) for word 

in spellings_series] 

    closest = sorted(distances)[:3] 

    outcomes.append(closest) 

    return outcomes[0][0][1], outcomes[0][0][0] 
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is especially useful. It is notably useful for tasks involving set-based representations, such as 

document similarity, recommendation systems, and clustering. The Jaccard index, unlike other 

similarity indices, only evaluates set membership and ignores the frequency or order of elements 

within sets. This makes it resistant to fluctuations in set sizes and excellent for processing sparse 

and high-dimensional data. In addition, the Jaccard index is computationally efficient because it 

only requires the calculation of set intersections and unions. For pseudocode see table 3. 

Table 3.  Jaccard Index Pseudocode 

 

 

2.2.3. TheFuzz (FuzzyWuzzy) 

The popular Python module "thefuzz"[32], [33] (formerly known as "fuzzywuzzy") provides fuzzy 

string matching functionality. It provides a variety of string similarity calculation methods, 

enabling the approximate matching and correction of text data. Methods such as Partial Ratio, and 

Token Sort Ratio are supported and used in this research.  

a. Partial Ratio 

This method considers the best matching substring between the two strings. Instead 

of comparing the entire strings, it identifies the most similar substring in both 

strings and calculates the ratio of similarity for that substring. Like the simple 

ratio, this ratio is also scaled to a number between 0 and 100. For pseudocode, see 

table 4. 

def jaccard(string, gram_number): 

    outcomes = [] 

    

    for entry in entries: 

        startwith = spellings_series.str.startswith(entry[0]) 

        spellings = spellings_series[startwith] 

        distances = [] 

         

        for word in spellings: 

            wordgram = nltk.ngrams(word, gram_number) 

            entrygram = set(nltk.ngrams(entry, gram_number)) 

            union = entrygram.union(set(wordgram)) 

             

            if len(union) == 0: 

                continue 

             

            distance = jaccard_distance(entrygram, set(wordgram)) 

            distances.append((distance, word)) 

         

        closest = sorted(distances)[:1] 

        outcomes.append([match for match in closest]) 

     

    if len(outcomes) == 0 or len(outcomes[0]) == 0: 

        return entry, 0 

    else: 

        return outcomes[0][0][1], outcomes[0][0][0] 
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Table 4.  Jaccard Index Pseudocode 

b. Sort Ratio 

This method tokenizes the strings into words, sorts the words alphabetically, and 

then joins them back into a string. The ratio between these processed strings is then 

calculated. This method is useful when comparing strings where the word order 

might not be the same but the same words are present. For pseudocode, see table 5. 

Table 5.  Sort Ratio Pseudocode 

 

 

def partial_ratio(s1, s2):   

  s1, s2 = utils.make_type_consistent(s1, s2)   

  if len(s1) <= len(s2):   

    shorter = s1   

    longer = s2   

  else:   

    shorter = s2   

    longer = s1   

  m = SequenceMatcher(None, shorter, longer)   

  blocks = m.get_matching_blocks()   

  scores = []   

  for block in blocks:   

    long_start = block[1] - block[0] if (block[1] - block[0]) > 0 

else 0   

    long_end = long_start + len(shorter)   

    long_substr = longer[long_start:long_end]   

    m2 = SequenceMatcher(None, shorter, long_substr)   

    r = m2.ratio()   

    if r > .995:   

      return 100   

    else:   

      scores.append(r)   

  return utils.intr(100 * max(scores)) 

def _process_and_sort(s, force_ascii, full_process=True):   

  ts = utils.full_process(s, force_ascii=force_ascii) if full_process 

else s   

  tokens = ts.split()   

  sorted_string = " ".join(sorted(tokens))   

  return sorted_string.strip()  

 

def _token_sort(s1, s2, partial=True, force_ascii=True, 

full_process=True):   

  sorted1 = _process_and_sort(s1, force_ascii, 

full_process=full_process) 

 

def token_sort_ratio(s1, s2, force_ascii=True, full_process=True):   

  return _token_sort(s1, s2, partial=False, force_ascii=force_ascii, 

full_process=full_process) 
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2.2.4. Maximum Likelihood Estimation 

MLE [46]in short is a statistical method widely used for estimating the parameters of a 

probability distribution based on observed data. In the context of natural language processing and 

text correction[47]. The main objective of MLE is to find the parameter values that maximize the 

likelihood of observing the given data. It starts by compiling a list of correct spellings from user 

inputs and commands. This list is then converted into a string representation. The training data is 

generated by tokenizing the string and creating n-grams, which are contiguous sequences of n 

tokens. An MLE model is then initialized, specifying the desired order of the model. The model is 

trained on the generated training data, using the MLE algorithm to estimate the probability 

distribution of word sequences. 

The predict_next_chars function takes an input string and aims to predict the most 

likely next words based on the trained MLE model. It utilizes a context-based approach, where the 

input string is used to determine the initial context for prediction. The function iterates a specified 

number of times, generating words using the MLE model's generate method. Each generated word 

is appended to the list of predicted characters until a period ('.') is encountered, indicating the end 

of a sentence or a significant break in the predicted sequence. The function returns the input string 

concatenated with the predicted characters, forming a corrected and extended version of the 

original input. For the pseudocode, see table 6. 

Table 6.  MLE  Pseudocode 

# Training phase 

correct_spellings_mle = [...]   

correct_spellings_string = '.'.join(correct_spellings_mle)   

tokens = list(correct_spellings_string)   

n = 3   

train_data = list(ngrams(tokens, n))   

model = MLE(n)   

model.fit([train_data], vocabulary_text=tokens)   

# Text correction phase 

def predict_next_chars(input_str, num_word=10, n=2): 

    original_input_str = input_str   

    # Prepare the context 

    if len(input_str) >= n: 

        input_str = input_str[:n-1]   

    context = tuple(input_str) 

    context = ('.',) + context   

 

    predicted_chars = [] 

    for i in range(num_word, 0, -1):   

        try: 

            next_chars = model.generate(num_words=num_word-i, 

text_seed=context)   

            if '.' in next_chars:   

                idx = next_chars.index('.') 

                predicted_chars.extend(next_chars[:idx]) 

                break 

            predicted_chars.extend(next_chars)   

            context = (context + tuple(next_chars))[-(n-1):]  

        except: 

            continue   

    if not predicted_chars:   

        return input_str 
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    return input_str + ''.join(predicted_chars) 

2.2.5. Norvig Algorithm 

The Norvig algorithm[48], [49], developed by Peter Norvig, is a widely used approach for text 

correction and spell checking. It employs statistical analysis and probabilistic models to suggest the 

most likely spelling corrections for misspelled words. The algorithm is based on the principle that 

the correct spelling of a word is the one that has the highest probability given the context in which 

it appears.  

The algorithm prepares training data. This corpus extracts words, normalizes them to lowercase, 

then calculates their frequencies using a Counter object. Probabilistic models are based on 

frequency distributions. The system uses potentially misspelled words to fix text. It suggests 

corrections within one or two edit distances from the original word. The algorithm generates 

candidates using known(), edits1(), and edits2(). The known() function filters candidate 

adjustments by checking the training corpus frequency distribution. Only valid words are 

considered for repairs. The edits1() function generates corrections one edit from the original word, 

considering deletions, transpositions, replacements, and insertions. Edits2() adds two-edit-distance 

corrections to edits1(). The algorithm uses the P(word) function to determine the most likely 

spelling fix. This function assesses word likelihood based on training corpus frequency. The most 

likely spelling correction for a term is chosen. For pseudocode, see table 7. 

Table 7.  Norvig Pseudocode 

 

 

3. Results and Discussion 

Within the course of this study, we analyzed and compared a number of text correction techniques, 

including Edit Levenshtein, Jaccard, FuzzPartialRatio, FuzzSortRatio, Maximum Likelihood 

Estimation (MLE), and Norvig. Each of these approaches was evaluated under identical settings, 

function correct(word): 

  candidates = (known(edits0(word)) or known(edits1(word)) or 

known(edits2(word)) or [word]) 

  return max(candidates, key=language_model_probability) 

 

function known(words): 

  return set(w for w in words if w in language_model) 

 

function edits0(word): 

  return {word} 

 

function edits1(word): 

  letters    = 'abcdefghijklmnopqrstuvwxyz' 

  splits     = [(word[:i], word[i:]) for i in range(len(word) + 1)] 

  deletes    = [L + R[1:] for L, R in splits if R] 

  transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] 

  replaces   = [L + c + R[1:] for L, R in splits if R for c in letters] 

  inserts    = [L + c + R for L, R in splits for c in letters] 

  return set(deletes + transposes + replaces + inserts) 

 

function edits2(word): 

  return {e2 for e1 in edits1(word) for e2 in edits1(e1)} 
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and their performance was evaluated based on the accuracy and speed of their corrections. To test 

the algorithms' ability to recognize and rectify faults, they were exposed to a variety of texts with 

errors that were inserted on purpose. The accuracy of each algorithm's adjustments were then 

compared to establish the most trustworthy algorithm, with a focus on those that consistently 

produced correct answers across all sentences. Alongside the accuracy of each algorithm, its speed 

was also tested. In real-time applications where response speed is critical, this is a crucial factor. 

The execution duration of each algorithm was meticulously documented, enabling us to determine 

which of these methods would provide the ideal mix of speed and accuracy. 

3.1. Correctness  

Every algorithm's accuracy is determined by comparing the ground truth of the 

sentences with the modified sentences. Upon closer inspection of the data in table 8. 

except MLE, it becomes clear that the algorithm's performance varies considerably 

based on the type of text and the nature of the errors inside it. Each strategy appears to 

handle the issue of vocabulary similarity, particularly when words in incorrect 

sentences exhibit a similar appearance to their correct counterparts despite their 

meanings deviating substantially. 

Table 8.  Correctness result 

Edit 

Distances 

Jaccard 

Index 

Fuzz Partial 

Ratio 

fuzz sort 

ratio  MLE  

Norvig 

result 

84% 11% 37% 79% 0% 
84% 

 

Taking the Edit Levenshtein algorithm as a case in point, it's clear that it has 

difficulties dealing with scenarios where the edit distance is high. The 'edit distance' is 

a measure of the dissimilarity between two strings, computed as the minimum number 

of single-character edits (insertions, deletions, or substitutions) required to change one 

word into the other. For instance, in the case of "disassemble the back door" and 

"disable the back door", the algorithm mistakenly corrects "disassemble" to "disable 

the lock", reflecting its struggle with the multiple transformations needed to go from 

the incorrect to the correct sentence. The Jaccard algorithm, FuzzSimpleRatio, 

FuzzPartialRatio, and FuzzSortRatio display similar challenges. They are each slightly 

confused by the difficulty of lexically related but semantically dissimilar terms. In the 

wrong statement "oven the gate," for instance, the algorithms mistakenly adjust "oven" 

to a range of other words, none of which is the proper "open." This exemplifies the 

possible dangers of an excessive dependence on lexical similarity, which can lead to 

problems when the correct and erroneous words have similar spellings but separate 

meanings. Meanwhile, the MLE (Maximum Likelihood Estimation) algorithm seems 

to encounter unique challenges. Although it is a powerful method used widely in 

statistical estimation, its limitations are brought to light in this analysis. In all the tested 

sentences, it didn't provide a single correct correction, suggesting that it might not be 

as suited to text correction as the other methods, or it might need additional fine-tuning 

or adjustments to deal with the unique challenges of this task. Norvig's approach, 

which is commonly considered as a sophisticated spell correction algorithm, does not 

emerge as the clear victor either. Although "unlock the back door" is changed 

appropriately, "turn on the tv" and "open the gate" are not. This demonstrates that even 

advanced algorithms may be misled by words with similar spelling but distinct 

meanings, such as "oven" and "open.", for sample result, see table 9. 
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Table 9.  Sample correction result 

Ground 

Truth 

User's 

Query 

Corrected by Algorithm 

Edit  Jaccard  FuzzPartial

Ratio  

FuzzSort

Ratio  

MLE  Norvig  

turn on 

the tv. 

turn on 

the tea. 

turn on 

the tv. 

television off 

the television. 

turn 

television the 

gate. 

turn on 

the gate. 

turn off the 

tv. 

turn on 

the the. 

turn off 

the light. 

turn off 

the flight. 

turn off 

the light. 

television off 

the fan. 

turn off the 

light. 

turn off 

the light. 

ter off the 

fan. 

turn off 

the light. 

lock the 

door. 

look the 

door. 

lock the 

door. 

lamp the 

desktop. 

unlock the 

door. 

lock the 

door. 

laptop the 

desktopen. 

lock the 

door. 

unlock 

the door. 

unluck 

the door. 

unlock 

the door. 

unlock the 

desktop. 

unlock the 

door. 

unlock 

the door. 

unlock the 

dision. 

unlock 

the door. 

turn on 

the lamp. 

turn on 

the lump. 

turn on 

the lamp. 

television off 

the lamp. 

turn 

television the 

lamp. 

turn on 

the lamp. 

ter open 

the lock. 

turn on 

the lamp. 

lock the 

windows. 

look the 

windows. 

lock the 

windows. 

lamp the 

windows. 

unlock the 

windows. 

lock the 

windows. 

laptop the 

windoor. 

lock the 

windows. 

 

3.2. Speed 

Due to the emphasis on efficiency in computing, speed should be examined to 

determine whether algorithms are viable for low-cost computers in real-time to achieve 

a greater user experience while yet obtaining more precision. 

 

Fig. 5. Algorithm Time Execution 

Based on figure 4, we disregard the MLE result as it contains no accurate phrases. 

However, if we compare this speed test with the accuracy based on table 5, edit 

Levenshtein emerges as the winner for selecting the fastest and most accurate 

algorithm. If the goal is to have a quicker method than Edit Levenshtein, but with a 

lesser expectation of accuracy, the Fuzz Sort Ratio algorithm appears as a possible 

option. This method has an average execution time of 31.6 milliseconds, making it the 

quickest of all evaluated algorithms. However, the precision of the adjustments suffers 

because of this increased speed. Based on Table 5, the Fuzz Sort Ratio algorithm has 

an accuracy percentage of 79%, which, while high, is somewhat lower than the Edit 

edit levenstein

Jaccard

Fuzz Partial Ratio

Fuzz Sort Ratio

MLE

Norvig

time execution in ms

max min average
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Levenshtein algorithm's correctness rate of 84%. This shows that while the Fuzz Sort 

Ratio approach may provide results more quickly than the Edit Levenshtein algorithm, 

it may also produce more mistakes. 

 

4. Conclusion 

In conclusion, each method for text correction evaluated in this study has its own benefits and 
drawbacks. The selection of a suitable algorithm is significantly influenced by the unique needs and 
limits of a given work, with a focus on the relevance of speed and accuracy. The Edit Levenshtein 
method has the greatest percentage of accuracy (84%), tied with the Norvig algorithm. This makes 
these two algorithms ideally suited for jobs requiring a high level of precision. However, the average 
execution time of the Norvig method (315.9 ms) was much greater than that of Edit Levenshtein 
(74.5 ms), making it less suitable for real-time applications. The method with the quickest average 
execution time (31.6 ms) was the Fuzz Sort Ratio algorithm. Its accuracy rate (79 %) was somewhat 
lower than that of Edit Levenshtein but is still substantial. This makes Fuzz Sort Ratio a desirable 
option in cases when speed is critical, and a small accuracy sacrifice is acceptable. 

Examine the following ideas considering the study's limitations and future research. First, this 
study focused on execution speed and accuracy, but future research may incorporate processor and 
memory consumption to further assess algorithm performance. Neural network-based text correction 
techniques might benefit from rapid improvements in machine learning and natural language 
processing. These methods may use artificial neural networks to enhance speed and accuracy. 
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