
International Journal of Artificial Intelligence Research ISSN 2579-7298

Vol. 8, No. 2, December 20224, pp. 231-247

 10.29099/ijair.v8i1.1085 http://ijair.id jurnal.ijair@gmail.com

Optimizing Text Correction For Voice Based IoT Smart
Building Virtual Assistants

Maulana Ahmad As Shidiqi a,1,, Mokh. Sholihul Hadi a,2,*, Aji Prasetya Wibawa a,3 , Mhd. Irvan b.4

a Department of Electrical Engineering and Informatics, Universitas Negeri Malang, Indonesia
b Graduate School of Information Science and Technology, The University of Tokyo Tokyo, Japan

1 Maulana.ahmad.2105348@students.um.ac.id; 2 *mokh.sholihul.ft@um.ac.id; 3 aji.prasetya.ft@um.ac.id, 4irvan@yamagula.ic.i.u-tokyo.ac.jp

* corresponding author

1. Introduction

The building has been an essential element in human life since ancient times. Several decades
ago, humans needed security from damage and earthquake destruction. However, in today's world,
users seek more than just security[1]; they desire a quality-of-life experience[2]. This includes the
ability for systems to automatically control HVAC (Heating, Ventilation, Air Conditioning) systems,
lighting, electricity, energy, and access control[3]. Researchers have coined the terms "Smart
Building" or "Intelligence Building" to describe the research and products related to these
innovations. This concept emerged in the 1980s in the United States, where the Intelligent Building
Institution explained the need for a system that integrates various systems to coordinate with each
other, aiming to maximize operating cost savings, improve return on investment (ROI), and provide
flexibility in management[4], [5]. The realization of Smart Buildings is made possible by the

A R T I C L E I N F O

A B ST R ACT

Article history

Received 21 Dec 2023

Revised 31 May 2024

Accepted 21 Oct 2024

 The integration of Virtual Assistants (VAs) within Smart Building

Internet of Things (IoT) ecosystems is increasingly critical, particularly

for interpreting user commands via Automatic Speech Recognition

(ASR). This paper presents an in-depth performance analysis of text

correction algorithms on a Raspberry Pi 4—a cost-effective and widely

used computing solution in smart building applications. Due to the

absence of GPU acceleration for Python on ARM architecture, a

specialized dataset was developed to benchmark algorithmic

performance, focusing on correction times and accuracy. Our study

utilized a near-real-world experimental setup, deploying Docker

containers to simulate IoT MQTT brokers, a Smart Building Platform,

and Rasa for dialogue management. Among the algorithms tested—Edit

distance, Jaccard, FuzzPartialRatio, FuzzSortRatio, MLE, and Norvig

Spell—the Edit distance and Norvig Spell emerged as leaders in

accuracy, achieving an 84% success rate in text correction. Notably, the

Edit distance algorithm demonstrated superior speed, vital for real-time

processing demands. The Fuzz Sort Ratio algorithm distinguished itself

with the fastest correction time at 31.6 milliseconds, albeit with a slight

compromise on accuracy, attaining a 79% success rate. Consequently,

the Edit distance algorithm is recommended for applications where

accuracy and response time are paramount, while the Fuzz Sort Ratio is

preferable for scenarios where speed is the overriding priority. This

research paves the way for future exploration into the computational

impacts of these algorithms and the exploration of neural network-based

methods to further enhance text correction capabilities in smart building

automation systems.

Keywords

Text Correction

Virtual Assistant

Internet of Things

http://dx.doi.org/10.29099/ijair.v8i1.1085
http://ijair./
mailto:jurnal.ijair@gmail.com

 International Journal of Artificial Intelligence Research ISSN 2579-7298

 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

Internet of Things (IoT), which is a technology development from machine-to-machine (M2M)
communications, enabling machines such as HVAC equipment, lighting, and electricity to
communicate via the internet[6]. The demand for such technology has been growing steadily and is
predicted to have a compound annual growth rate (CAGR) of around 13% until 2030, with the
number of devices expected to increase from 8.6 billion in 2022 to 29 billion in 2030[7].

Currently, Smart Buildings not only utilize Graphical User Interfaces (GUI) as Human Machine

Interfaces (HMI), but they also leverage Voice User Interfaces (VUI) [8], [9] , which have been

gaining popularity year after year. Unfortunately, ASR is reliable because running on server which

is has a lot of resource to do that with highly accurate. The journey of ASR began in the 1950s with

the Three Bell Labs Researchers who designed an Automatic Speech Recognition (ASR) system

called Audrey, which could recognize digits from 0 to 9. In 1962, IBM demonstrated Shoebox, a

system capable of understanding up to 16 spoken words in English. In 1971, IBM created the

Automatic Call Identification system [10] In the 1970s, DARPA conducted Speech Understanding

Research with a vocabulary size of one thousand words. Additionally, they developed the Hidden

Markov Model (HMM)[11] as an advancement of the Markov Chain applied to ASR. In the 1980s,

an IBM team developed the Tangora voice-activated typewriter, utilizing HMM technology. In

short, In the development of ASR, in 1990, the Sphinx-II ASR system developed by CMU became

the first to recognize continuous speech with a wide vocabulary[12]. The application of Deep

Neural Networks (DNN) in the early 2000s [13] gained significant attention in the ASR field, as

DNNs have high learning capacity and can model complex nonlinear relationships in speech data.

The "end-to-end" approach and Attention-based ASR models began to be used in the mid-2010s,

allowing for simultaneous learning of all components of speech recognition and yielding better

overall speech recognition performance[14]. Even though performance accuracy and error rates are

getting better and better every year, a super high-powered computational engine should be

available[15], [16]. Despite user acquisitions each year grow rapidly. It still needs a privacy

concern especially Europe standard GDPR became harder to entry[17], [18]. One solution that

handy is running all of that inside the machine, not go to outside server [19]. This is why speech

recognition on our devices needs a lot of storage and fast processing, or the users must make up for

the fact that the lowering the quality of recognition. The alternative that recognizes inside the

machine but increasing accuracy with fast correction algorithms[18].

The evolution of Smart Buildings, supported by the Internet of Things (IoT), has brought a

significant shift from traditional structures to ones that offer a comprehensive quality-of-life

experience. This research highlights the strength of Smart Buildings in their ability to integrate

various systems—such as HVAC, lighting, and access control—to optimize operational costs,

improve ROI, and offer management flexibility. The deployment of Voice User Interfaces (VUI)

through Automatic Speech Recognition (ASR) systems presents a modern approach to Human-

Machine Interfaces, marking a notable advancement from the early days of digit recognition to

today's sophisticated end-to-end models with attention mechanisms.

However, the research also reveals certain weaknesses. While ASR systems have improved,

their reliance on powerful server-side resources for high accuracy poses challenges, especially

considering the privacy concerns under regulations like Europe's GDPR. This necessitates a move

towards on-device processing to safeguard user privacy, which in turn demands substantial storage

and computational speed on local machines. Herein lies a trade-off: ensuring user privacy and data

security may result in compromised recognition quality unless offset by rapid and precise text

correction algorithms[20]–[24].

ISSN 2579-7298 International Journal of Artificial Intelegence Research
 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

2. Method

In this study, we aimed to evaluate the performance of text correction for smart building virtual

assistants. Raspberry Pi 4 is used for this study to measure how fast the algorithms perform in low-

cost computing devices Despite the SoC (single-on-chip) there is GPU available which

theoretically can use GPU acceleration, none of the python itself or python libraries the including

Tensorflow doesn’t support GPU acceleration for ARM architecture [25] which is cannot utilizing

parallelism. That’s why this research calculates the time as performance.

We collected a dataset of utterances related to smart building commands, where each record

contained the original command, an incorrect version of the command, and the corrected output

from different correction algorithms. These included methods[26], [27] such as Edit distance

(Levenshtein) [28], [29],Jaccard[30], [31], FuzzPartialRatio[32], [33], FuzzSortRatio, MLE[34],

and Norvig Spell algorithm[35]. For each correction algorithm, we recorded the correction time,

the corrected command, and whether the correction was correct or not.

Fig. 1. Edge Computer architecture

Fig. 2. Voice-based Virtual Assistant for Smart Building

 International Journal of Artificial Intelligence Research ISSN 2579-7298

 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

2.1. Experiment Scenario

This experiment contains a text correction application using Docker containers[36] on a Raspberry

Pi 4 (see figure 1), along with other dockerized applications is running to make sure such as an IoT

MQTT broker which function as broker between IoT device and the platform[37] , a Smart

Building Platform as IoT devices manager[38], and Rasa dialogue management [39] as interface

between user and smart building platform. Docker containers offer numerous benefits, including

the ability to isolate each application, thereby preventing conflicts between libraries and binary

dependencies [40]. This ensures the smooth operation and compatibility of the system's various

components. If look at the whole system (see figure 2), there are a lot of components in a voice-

based virtual assistant for smart building in an existing system; such as a building management

platform that has a database, IoT broker service and its devices, automatic speech recognition,

dialogue management, and text-to-speech; and an additional system for this research, which is text

similarity correction system.

Fig. 3. Text Similarity Process Location

Text Similarity occurs after the user's voice has been converted to string text by speech recognition

(see figure 3). The output of the Text Similarity function is the corrected string text which is

required for dialogue management to ensure the string is matched. After a match has been made,

the dialogue management will instruct the IoT device via Smart Building Platform to turn on or off

depending on the command. The analysis phase of the text similarity process involved evaluating

the accuracy and speed of each correction algorithm. We measured accuracy by comparing the

corrected command against the original command and determining the percentage of successful

corrections. Speed was evaluated based on the recorded correction time. In order to improve the

efficiency of the entire system's process (see figure 4), the system only performs text similarity

correction if the query didn't match after being fed to the dialogue manager.

Fig. 4. Text Similarity execution Algorithm

ISSN 2579-7298 International Journal of Artificial Intelegence Research
 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

2.2. Text correction method

The first step is the registered devices, and their corresponding commands are recorded and stored

in a dictionary within the text correction system. This dictionary serves as a reference for the

system to recognize and correct any input that corresponds to a device and it’s synonym and

command. By maintaining this dictionary, the text correction system can accurately identify and

correct user queries related to specific devices or commands. And then when a user enters a string

query command, it is passed through each algorithm within the text correction system. Before

applying the algorithms, a preprocessing step is performed on the query. This preprocessing

includes converting the query to lowercase using the lower() function and tokenizing it by

whitespace by using tokens = nltk.word_tokenize(user_query). These steps help

standardize the input and ensure consistency in the text correction process. and then the next step is

correcting token by token and match it within the dictionary, if there is a closed word between

every token user_query and the dictionary, the algorithm will return the correction instead. In every

user query, before and after the correction method the time will be recorded to measure how fast

the algorithm is. This process is based on pseudocode below.

Table 1. Pseudocode text correction process

2.2.1. Edit Distance

The edit distance[41]–[43] is a metric that measures the dissimilarity or similarity of two

strings[44]. It quantifies the minimal number of operations required to transform one string into

another, where each operation may involve the insertion, deletion, or substitution of a single

character. The edit distance algorithm evaluates each character in both strings and computes the

cost of transforming one into the other. Typically, 1 is assigned to the cost of each operation. The

algorithm seeks to identify the sequence of operations with the lowest total cost. A common

method for calculating the edit distance is based on dynamic programming. It requires constructing

a matrix called the edit distance matrix, where each cell represents the cost of transforming a prefix

of one string into a prefix of the other string. The matrix is initialized with the base cases and then

iteratively filled in using the following recurrence relation:

a. If the current characters in both strings are identical, the current cell's cost is

identical to the previous cell's cost.

b. If the characters are different, the cost in the current cell is the minimum of the

cost in the left cell (corresponding to deletion), the cost in the upper cell

dictionary = ["on", "off", "fan", "tv", "television", "PC", "lamp", ...]

user_query = # String var

user_query = user_query.lower() # Convert query to lowercase

tokens = nltk.word_tokenize(user_query) # Tokenize the user query string

start_time = time.time() # Start measuring time

corrected_tokens = [] #create a new array of text

for token in tokens:

 if token in [".", ",", "!", "?", ":", ";", "the"]:

 corrected_tokens.append(token)

 continue

 result = text_correction(token)

 corrected_tokens.append(result)

elapsed_time = time.time() - start_time

corrected_sentence = " ".join(corrected_tokens)

 International Journal of Artificial Intelligence Research ISSN 2579-7298

 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

(corresponding to insertion), or the cost in the diagonal cell (corresponding to

substitution).

c. Once the edit distance matrix is constructed, the minimum cost, which is in the

bottom-right cell of the matrix, represents the edit distance between the two

strings. This value indicates the minimum number of operations required to

transform one string into the other.

For the pseudocode, see table 2.

Table 2. Pseudocode Edit distance

2.2.2. Jaccard Index

The Jaccard similarity coefficient[45], also known as the Jaccard index, measures the overlap

between two sets by computing the ratio between their intersection and union sizes. Given two sets

A and B, the Jaccard index (J(A, B)) is calculated as the intersection cardinality of A and B divided

by the union cardinality of A and B (J(A, B) = |A ∩ B| / |A ∪ B|). The resultant coefficient ranges

from 0 to 1, with 0 indicating no overlap between the sets and 1 indicating perfect similarity. In

situations when the presence or absence of elements in sets is of vital importance, the Jaccard index

def calculate_edit_distance(string1, string2):

 m = len(string1)

 n = len(string2)

 # Create a matrix to store the edit distances

 distances = [[0] * (n + 1) for _ in range(m + 1)]

 # Initialize the first row and column of the matrix

 for i in range(m + 1):

 distances[i][0] = i

 for j in range(n + 1):

 distances[0][j] = j

 # Calculate the edit distances

 for i in range(1, m + 1):

 for j in range(1, n + 1):

 if string1[i - 1] == string2[j - 1]:

 distances[i][j] = distances[i - 1][j - 1]

 else:

 substitute_cost = distances[i - 1][j - 1] + 1

 delete_cost = distances[i - 1][j] + 1

 insert_cost = distances[i][j - 1] + 1

 distances[i][j] = min(substitute_cost, delete_cost,

insert_cost)

 return distances[m][n]

def editdistance_function(text):

 outcomes = []

 distances = [(edit_distance(lowercase_text, word), word) for word

in spellings_series]

 closest = sorted(distances)[:3]

 outcomes.append(closest)

 return outcomes[0][0][1], outcomes[0][0][0]

ISSN 2579-7298 International Journal of Artificial Intelegence Research
 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

is especially useful. It is notably useful for tasks involving set-based representations, such as

document similarity, recommendation systems, and clustering. The Jaccard index, unlike other

similarity indices, only evaluates set membership and ignores the frequency or order of elements

within sets. This makes it resistant to fluctuations in set sizes and excellent for processing sparse

and high-dimensional data. In addition, the Jaccard index is computationally efficient because it

only requires the calculation of set intersections and unions. For pseudocode see table 3.

Table 3. Jaccard Index Pseudocode

2.2.3. TheFuzz (FuzzyWuzzy)

The popular Python module "thefuzz"[32], [33] (formerly known as "fuzzywuzzy") provides fuzzy

string matching functionality. It provides a variety of string similarity calculation methods,

enabling the approximate matching and correction of text data. Methods such as Partial Ratio, and

Token Sort Ratio are supported and used in this research.

a. Partial Ratio

This method considers the best matching substring between the two strings. Instead

of comparing the entire strings, it identifies the most similar substring in both

strings and calculates the ratio of similarity for that substring. Like the simple

ratio, this ratio is also scaled to a number between 0 and 100. For pseudocode, see

table 4.

def jaccard(string, gram_number):

 outcomes = []

 for entry in entries:

 startwith = spellings_series.str.startswith(entry[0])

 spellings = spellings_series[startwith]

 distances = []

 for word in spellings:

 wordgram = nltk.ngrams(word, gram_number)

 entrygram = set(nltk.ngrams(entry, gram_number))

 union = entrygram.union(set(wordgram))

 if len(union) == 0:

 continue

 distance = jaccard_distance(entrygram, set(wordgram))

 distances.append((distance, word))

 closest = sorted(distances)[:1]

 outcomes.append([match for match in closest])

 if len(outcomes) == 0 or len(outcomes[0]) == 0:

 return entry, 0

 else:

 return outcomes[0][0][1], outcomes[0][0][0]

 International Journal of Artificial Intelligence Research ISSN 2579-7298

 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

Table 4. Jaccard Index Pseudocode

b. Sort Ratio

This method tokenizes the strings into words, sorts the words alphabetically, and

then joins them back into a string. The ratio between these processed strings is then

calculated. This method is useful when comparing strings where the word order

might not be the same but the same words are present. For pseudocode, see table 5.

Table 5. Sort Ratio Pseudocode

def partial_ratio(s1, s2):

 s1, s2 = utils.make_type_consistent(s1, s2)

 if len(s1) <= len(s2):

 shorter = s1

 longer = s2

 else:

 shorter = s2

 longer = s1

 m = SequenceMatcher(None, shorter, longer)

 blocks = m.get_matching_blocks()

 scores = []

 for block in blocks:

 long_start = block[1] - block[0] if (block[1] - block[0]) > 0

else 0

 long_end = long_start + len(shorter)

 long_substr = longer[long_start:long_end]

 m2 = SequenceMatcher(None, shorter, long_substr)

 r = m2.ratio()

 if r > .995:

 return 100

 else:

 scores.append(r)

 return utils.intr(100 * max(scores))

def _process_and_sort(s, force_ascii, full_process=True):

 ts = utils.full_process(s, force_ascii=force_ascii) if full_process

else s

 tokens = ts.split()

 sorted_string = " ".join(sorted(tokens))

 return sorted_string.strip()

def _token_sort(s1, s2, partial=True, force_ascii=True,

full_process=True):

 sorted1 = _process_and_sort(s1, force_ascii,

full_process=full_process)

def token_sort_ratio(s1, s2, force_ascii=True, full_process=True):

 return _token_sort(s1, s2, partial=False, force_ascii=force_ascii,

full_process=full_process)

ISSN 2579-7298 International Journal of Artificial Intelegence Research
 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

2.2.4. Maximum Likelihood Estimation

MLE [46]in short is a statistical method widely used for estimating the parameters of a

probability distribution based on observed data. In the context of natural language processing and

text correction[47]. The main objective of MLE is to find the parameter values that maximize the

likelihood of observing the given data. It starts by compiling a list of correct spellings from user

inputs and commands. This list is then converted into a string representation. The training data is

generated by tokenizing the string and creating n-grams, which are contiguous sequences of n

tokens. An MLE model is then initialized, specifying the desired order of the model. The model is

trained on the generated training data, using the MLE algorithm to estimate the probability

distribution of word sequences.

The predict_next_chars function takes an input string and aims to predict the most

likely next words based on the trained MLE model. It utilizes a context-based approach, where the

input string is used to determine the initial context for prediction. The function iterates a specified

number of times, generating words using the MLE model's generate method. Each generated word

is appended to the list of predicted characters until a period ('.') is encountered, indicating the end

of a sentence or a significant break in the predicted sequence. The function returns the input string

concatenated with the predicted characters, forming a corrected and extended version of the

original input. For the pseudocode, see table 6.

Table 6. MLE Pseudocode

Training phase

correct_spellings_mle = [...]

correct_spellings_string = '.'.join(correct_spellings_mle)

tokens = list(correct_spellings_string)

n = 3

train_data = list(ngrams(tokens, n))

model = MLE(n)

model.fit([train_data], vocabulary_text=tokens)

Text correction phase

def predict_next_chars(input_str, num_word=10, n=2):

 original_input_str = input_str

 # Prepare the context

 if len(input_str) >= n:

 input_str = input_str[:n-1]

 context = tuple(input_str)

 context = ('.',) + context

 predicted_chars = []

 for i in range(num_word, 0, -1):

 try:

 next_chars = model.generate(num_words=num_word-i,

text_seed=context)

 if '.' in next_chars:

 idx = next_chars.index('.')

 predicted_chars.extend(next_chars[:idx])

 break

 predicted_chars.extend(next_chars)

 context = (context + tuple(next_chars))[-(n-1):]

 except:

 continue

 if not predicted_chars:

 return input_str

 International Journal of Artificial Intelligence Research ISSN 2579-7298

 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

 return input_str + ''.join(predicted_chars)

2.2.5. Norvig Algorithm

The Norvig algorithm[48], [49], developed by Peter Norvig, is a widely used approach for text

correction and spell checking. It employs statistical analysis and probabilistic models to suggest the

most likely spelling corrections for misspelled words. The algorithm is based on the principle that

the correct spelling of a word is the one that has the highest probability given the context in which

it appears.

The algorithm prepares training data. This corpus extracts words, normalizes them to lowercase,

then calculates their frequencies using a Counter object. Probabilistic models are based on

frequency distributions. The system uses potentially misspelled words to fix text. It suggests

corrections within one or two edit distances from the original word. The algorithm generates

candidates using known(), edits1(), and edits2(). The known() function filters candidate

adjustments by checking the training corpus frequency distribution. Only valid words are

considered for repairs. The edits1() function generates corrections one edit from the original word,

considering deletions, transpositions, replacements, and insertions. Edits2() adds two-edit-distance

corrections to edits1(). The algorithm uses the P(word) function to determine the most likely

spelling fix. This function assesses word likelihood based on training corpus frequency. The most

likely spelling correction for a term is chosen. For pseudocode, see table 7.

Table 7. Norvig Pseudocode

3. Results and Discussion

Within the course of this study, we analyzed and compared a number of text correction techniques,

including Edit Levenshtein, Jaccard, FuzzPartialRatio, FuzzSortRatio, Maximum Likelihood

Estimation (MLE), and Norvig. Each of these approaches was evaluated under identical settings,

function correct(word):

 candidates = (known(edits0(word)) or known(edits1(word)) or

known(edits2(word)) or [word])

 return max(candidates, key=language_model_probability)

function known(words):

 return set(w for w in words if w in language_model)

function edits0(word):

 return {word}

function edits1(word):

 letters = 'abcdefghijklmnopqrstuvwxyz'

 splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

 deletes = [L + R[1:] for L, R in splits if R]

 transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]

 replaces = [L + c + R[1:] for L, R in splits if R for c in letters]

 inserts = [L + c + R for L, R in splits for c in letters]

 return set(deletes + transposes + replaces + inserts)

function edits2(word):

 return {e2 for e1 in edits1(word) for e2 in edits1(e1)}

ISSN 2579-7298 International Journal of Artificial Intelegence Research
 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

and their performance was evaluated based on the accuracy and speed of their corrections. To test

the algorithms' ability to recognize and rectify faults, they were exposed to a variety of texts with

errors that were inserted on purpose. The accuracy of each algorithm's adjustments were then

compared to establish the most trustworthy algorithm, with a focus on those that consistently

produced correct answers across all sentences. Alongside the accuracy of each algorithm, its speed

was also tested. In real-time applications where response speed is critical, this is a crucial factor.

The execution duration of each algorithm was meticulously documented, enabling us to determine

which of these methods would provide the ideal mix of speed and accuracy.

3.1. Correctness

Every algorithm's accuracy is determined by comparing the ground truth of the

sentences with the modified sentences. Upon closer inspection of the data in table 8.

except MLE, it becomes clear that the algorithm's performance varies considerably

based on the type of text and the nature of the errors inside it. Each strategy appears to

handle the issue of vocabulary similarity, particularly when words in incorrect

sentences exhibit a similar appearance to their correct counterparts despite their

meanings deviating substantially.

Table 8. Correctness result

Edit

Distances

Jaccard

Index

Fuzz Partial

Ratio

fuzz sort

ratio MLE

Norvig

result

84% 11% 37% 79% 0%
84%

Taking the Edit Levenshtein algorithm as a case in point, it's clear that it has

difficulties dealing with scenarios where the edit distance is high. The 'edit distance' is

a measure of the dissimilarity between two strings, computed as the minimum number

of single-character edits (insertions, deletions, or substitutions) required to change one

word into the other. For instance, in the case of "disassemble the back door" and

"disable the back door", the algorithm mistakenly corrects "disassemble" to "disable

the lock", reflecting its struggle with the multiple transformations needed to go from

the incorrect to the correct sentence. The Jaccard algorithm, FuzzSimpleRatio,

FuzzPartialRatio, and FuzzSortRatio display similar challenges. They are each slightly

confused by the difficulty of lexically related but semantically dissimilar terms. In the

wrong statement "oven the gate," for instance, the algorithms mistakenly adjust "oven"

to a range of other words, none of which is the proper "open." This exemplifies the

possible dangers of an excessive dependence on lexical similarity, which can lead to

problems when the correct and erroneous words have similar spellings but separate

meanings. Meanwhile, the MLE (Maximum Likelihood Estimation) algorithm seems

to encounter unique challenges. Although it is a powerful method used widely in

statistical estimation, its limitations are brought to light in this analysis. In all the tested

sentences, it didn't provide a single correct correction, suggesting that it might not be

as suited to text correction as the other methods, or it might need additional fine-tuning

or adjustments to deal with the unique challenges of this task. Norvig's approach,

which is commonly considered as a sophisticated spell correction algorithm, does not

emerge as the clear victor either. Although "unlock the back door" is changed

appropriately, "turn on the tv" and "open the gate" are not. This demonstrates that even

advanced algorithms may be misled by words with similar spelling but distinct

meanings, such as "oven" and "open.", for sample result, see table 9.

 International Journal of Artificial Intelligence Research ISSN 2579-7298

 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

Table 9. Sample correction result

Ground

Truth

User's

Query

Corrected by Algorithm

Edit Jaccard FuzzPartial

Ratio

FuzzSort

Ratio

MLE Norvig

turn on

the tv.

turn on

the tea.

turn on

the tv.

television off

the television.

turn

television the

gate.

turn on

the gate.

turn off the

tv.

turn on

the the.

turn off

the light.

turn off

the flight.

turn off

the light.

television off

the fan.

turn off the

light.

turn off

the light.

ter off the

fan.

turn off

the light.

lock the

door.

look the

door.

lock the

door.

lamp the

desktop.

unlock the

door.

lock the

door.

laptop the

desktopen.

lock the

door.

unlock

the door.

unluck

the door.

unlock

the door.

unlock the

desktop.

unlock the

door.

unlock

the door.

unlock the

dision.

unlock

the door.

turn on

the lamp.

turn on

the lump.

turn on

the lamp.

television off

the lamp.

turn

television the

lamp.

turn on

the lamp.

ter open

the lock.

turn on

the lamp.

lock the

windows.

look the

windows.

lock the

windows.

lamp the

windows.

unlock the

windows.

lock the

windows.

laptop the

windoor.

lock the

windows.

3.2. Speed

Due to the emphasis on efficiency in computing, speed should be examined to

determine whether algorithms are viable for low-cost computers in real-time to achieve

a greater user experience while yet obtaining more precision.

Fig. 5. Algorithm Time Execution

Based on figure 4, we disregard the MLE result as it contains no accurate phrases.

However, if we compare this speed test with the accuracy based on table 5, edit

Levenshtein emerges as the winner for selecting the fastest and most accurate

algorithm. If the goal is to have a quicker method than Edit Levenshtein, but with a

lesser expectation of accuracy, the Fuzz Sort Ratio algorithm appears as a possible

option. This method has an average execution time of 31.6 milliseconds, making it the

quickest of all evaluated algorithms. However, the precision of the adjustments suffers

because of this increased speed. Based on Table 5, the Fuzz Sort Ratio algorithm has

an accuracy percentage of 79%, which, while high, is somewhat lower than the Edit

edit levenstein

Jaccard

Fuzz Partial Ratio

Fuzz Sort Ratio

MLE

Norvig

time execution in ms

max min average

ISSN 2579-7298 International Journal of Artificial Intelegence Research
 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

Levenshtein algorithm's correctness rate of 84%. This shows that while the Fuzz Sort

Ratio approach may provide results more quickly than the Edit Levenshtein algorithm,

it may also produce more mistakes.

4. Conclusion

In conclusion, each method for text correction evaluated in this study has its own benefits and
drawbacks. The selection of a suitable algorithm is significantly influenced by the unique needs and
limits of a given work, with a focus on the relevance of speed and accuracy. The Edit Levenshtein
method has the greatest percentage of accuracy (84%), tied with the Norvig algorithm. This makes
these two algorithms ideally suited for jobs requiring a high level of precision. However, the average
execution time of the Norvig method (315.9 ms) was much greater than that of Edit Levenshtein
(74.5 ms), making it less suitable for real-time applications. The method with the quickest average
execution time (31.6 ms) was the Fuzz Sort Ratio algorithm. Its accuracy rate (79 %) was somewhat
lower than that of Edit Levenshtein but is still substantial. This makes Fuzz Sort Ratio a desirable
option in cases when speed is critical, and a small accuracy sacrifice is acceptable.

Examine the following ideas considering the study's limitations and future research. First, this
study focused on execution speed and accuracy, but future research may incorporate processor and
memory consumption to further assess algorithm performance. Neural network-based text correction
techniques might benefit from rapid improvements in machine learning and natural language
processing. These methods may use artificial neural networks to enhance speed and accuracy.

Acknowledgment

This research is funded by the Ministry of Education, Republic of Indonesia with funding
program Graduate research scheme - research master thesis programme with registration number
140/E5/PG.02.00.PL/2023.

References

[1] A. H. Buckman, M. Mayfield, and S. B. M. Beck, “What is a Smart Building?”, doi:

10.1108/SASBE-01-2014-0003.

[2] F. Siu, D. Chan, D. Clements-Croome, and T. Yang, “Editorial: smart buildings,”

https://doi.org/10.1080/17508975.2021.1867335, vol. 13, no. 1, pp. 1–3, 2021, doi:

10.1080/17508975.2021.1867335.

[3] J. King and C. Perry, “Smart Buildings: Using Smart Technology to Save Energy in

Existing Buildings,” 2017.

[4] A. Ghaffarianhoseini et al., “What is an intelligent building? Analysis of recent

interpretations from an international perspective,”

https://doi.org/10.1080/00038628.2015.1079164, vol. 59, no. 5, pp. 338–357, Sep. 2015,

doi: 10.1080/00038628.2015.1079164.

[5] J. King and C. Perry, “Smart Buildings: Using Smart Technology to Save Energy in

Existing Buildings,” 2017.

[6] R. Minerva, A. Biru, and D. Rotondi, Towards a definition of the Internet of Things (IoT),

Revision 1. IEEE Internet Initiative, 2015. Accessed: Apr. 05, 2023. [Online]. Available:

https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Re

vision1_27MAY15.pdf

 International Journal of Artificial Intelligence Research ISSN 2579-7298

 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

[7] L. S. Vailshery, “IoT connected devices worldwide 2019-2030,” Statista. Accessed: Apr.

05, 2023. [Online]. Available: https://www.statista.com/statistics/1183457/iot-connected-

devices-worldwide/

[8] F. Goossens, “Designing a VUI – Voice User Interface.” Accessed: Jun. 19, 2020. [Online].

Available: https://www.toptal.com/designers/ui/designing-a-vui

[9] Mokh. S. Hadi, M. A. A. Shidiqi, I. A. E. Zaeni, M. A. Mizar, and M. Irvan, “Voice-Based

Monitoring and Control System of Electronic Appliance Using Dialog Flow API Via

Google Assistant,” in 2019 International Conference on Electrical, Electronics and

Information Engineering (ICEEIE), IEEE, Oct. 2019, pp. 106–110. doi:

10.1109/ICEEIE47180.2019.8981415.

[10] B. H. Juang and L. R. Rabiner, “Automatic Speech Recognition - A Brief History of the

Technology Development,” 2004. Accessed: May 03, 2023. [Online]. Available:

https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/354_LALI-ASRHistory-final-10-

8.pdf

[11] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989, doi:

10.1109/5.18626.

[12] H. A. Bourlard and N. Morgan, “Connectionist Speech Recognition,” Connectionist Speech

Recognition, 1994, doi: 10.1007/978-1-4615-3210-1.

[13] X. Huang, J. Baker, and R. Reddy, “A historical perspective of speech recognition,”

Commun ACM, vol. 57, no. 1, pp. 94–103, Jan. 2014, doi: 10.1145/2500887.

[14] B. Shillingford et al., “Large-Scale Visual Speech Recognition,” Proceedings of the Annual

Conference of the International Speech Communication Association, INTERSPEECH, vol.

2019-September, pp. 4135–4139, Jul. 2018, doi: 10.21437/Interspeech.2019-1669.

[15] M. Pleva, J. Juhar, and A. S. Thiessen, “Automatic Acoustic Speech segmentation in Praat

using cloud based ASR,” Proceedings of 25th International Conference Radioelektronika,

RADIOELEKTRONIKA 2015, pp. 172–175, Jun. 2015, doi:

10.1109/RADIOELEK.2015.7129000.

[16] S. Ghosh and O. Kristensson, “Neural Networks for Text Correction and Completion in

Keyboard Decoding”, Accessed: Oct. 20, 2023. [Online]. Available:

http://luululu.com/tweet/

[17] T. Ke and K. Sudhir, “Privacy Rights and Data Security: GDPR and Personal Data Driven

Markets,” SSRN Electronic Journal, 2020, doi: 10.2139/ssrn.3643979.

[18] A. Hard et al., “FEDERATED LEARNING FOR MOBILE KEYBOARD PREDICTION”,

Accessed: Oct. 20, 2023. [Online]. Available: https://www.tensorflow.org/lite/

[19] Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data Security and Privacy in Cloud Computing,”

Int J Distrib Sens Netw, vol. 10, no. 7, p. 190903, Jul. 2014, doi: 10.1155/2014/190903.

[20] J. Jo, J. Kung, S. Lee, and Y. Lee, “Similarity-Based LSTM Architecture for Energy-

Efficient Edge-Level Speech Recognition,” in 2019 IEEE/ACM International Symposium

on Low Power Electronics and Design (ISLPED), IEEE, Jul. 2019, pp. 1–6. doi:

10.1109/ISLPED.2019.8824862.

ISSN 2579-7298 International Journal of Artificial Intelegence Research
 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

[21] E. Kalbaliyev and S. Rustamov, “Text Similarity Detection Using Machine Learning

Algorithms with Character-Based Similarity Measures,” 2021, pp. 11–19. doi: 10.1007/978-

3-030-74728-2_2.

[22] N. Gahman and V. Elangovan, “A Comparison of Document Similarity Algorithms,” Apr.

2023.

[23] D. D. Prasetya, A. Prasetya Wibawa, and T. Hirashima, “The performance of text similarity

algorithms,” International Journal of Advances in Intelligent Informatics, vol. 4, no. 1, p.

63, Mar. 2018, doi: 10.26555/ijain.v4i1.152.

[24] W. H.Gomaa and A. A. Fahmy, “A Survey of Text Similarity Approaches,” Int J Comput

Appl, vol. 68, no. 13, pp. 13–18, Apr. 2013, doi: 10.5120/11638-7118.

[25] Q. Li, J. Song, J. Ning, and J. Yuan, “The Detailed Data on the Neural Compute Stick

Acceleration Performance,” Proceedings - 2019 Chinese Automation Congress, CAC 2019,

pp. 4959–4962, Nov. 2019, doi: 10.1109/CAC48633.2019.8996841.

[26] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang, “String similarity measures and joins with

synonyms,” in Proceedings of the 2013 international conference on Management of data -

SIGMOD ’13, New York, New York, USA: ACM Press, 2013, p. 373. doi:

10.1145/2463676.2465313.

[27] M. Benard Magara, S. O. Ojo, and T. Zuva, “A comparative analysis of text similarity

measures and algorithms in research paper recommender systems,” in 2018 Conference on

Information Communications Technology and Society (ICTAS), IEEE, Mar. 2018, pp. 1–5.

doi: 10.1109/ICTAS.2018.8368766.

[28] Y. S. Han, S. K. Ko, T. Ng, and K. Salomaa, “Closest substring problems for regular

languages,” Theor Comput Sci, vol. 862, pp. 144–154, Mar. 2021, doi:

10.1016/J.TCS.2020.09.005.

[29] S. Konstantinidis, “Computing the edit distance of a regular language,” Inf Comput, vol.

205, no. 9, pp. 1307–1316, Sep. 2007, doi: 10.1016/J.IC.2007.06.001.

[30] “(PDF) Modifying Jaccard Coefficient for Texts Similarity.” Accessed: Nov. 06, 2023.

[Online]. Available:

https://www.researchgate.net/publication/340267006_Modifying_Jaccard_Coefficient_for_

Texts_Similarity

[31] İ. Kabasakal and H. Soyuer, “A Jaccard Similarity-Based Model to Match Stakeholders for

Collaboration in an Industry-Driven Portal,” Proceedings 2021, Vol. 74, Page 15, vol. 74,

no. 1, p. 15, Mar. 2021, doi: 10.3390/PROCEEDINGS2021074015.

[32] P. J. Rao, K. N. Rao, and S. Gokuruboyina, “An Experimental Study with Fuzzy-Wuzzy

(Partial Ratio) for Identifying the Similarity between English and French Languages for

Plagiarism Detection,” International Journal of Advanced Computer Science and

Applications, vol. 13, no. 10, pp. 393–401, 2022, doi: 10.14569/IJACSA.2022.0131047.

[33] G. A. Rao, G. Srinivas, K. V. Rao, and P. V. G. D. P. Reddy, “G APPA RAO, et al.: A

PARTIAL RATIO AND RATIO BASED FUZZY-WUZZY PROCEDURE FOR

CHARACTERISTIC MINING OF MATHEMATICAL FORMULAS FROM

DOCUMENTS A PARTIAL RATIO AND RATIO BASED FUZZY-WUZZY

 International Journal of Artificial Intelligence Research ISSN 2579-7298

 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

PROCEDURE FOR CHARACTERISTIC MINING OF MATHEMATICAL FORMULAS

FROM DOCUMENTS”, doi: 10.21917/ijsc.2018.0242.

[34] Y. Song et al., “Improving Maximum Likelihood Training for Text Generation with Density

Ratio Estimation,” 2020.

[35] Y. Kantor et al., “Learning to combine Grammatical Error Corrections,” ACL 2019 -

Innovative Use of NLP for Building Educational Applications, BEA 2019 - Proceedings of

the 14th Workshop, pp. 139–148, Jun. 2019, doi: 10.18653/v1/w19-4414.

[36] N. Zhao et al., “Large-Scale Analysis of Docker Images and Performance Implications for

Container Storage Systems,” IEEE Transactions on Parallel and Distributed Systems, vol.

32, no. 4, pp. 918–930, Apr. 2021, doi: 10.1109/TPDS.2020.3034517.

[37] C. S. Park and H. M. Nam, “Security Architecture and Protocols for Secure MQTT-SN,”

IEEE Access, vol. 8, pp. 226422–226436, 2020, doi: 10.1109/ACCESS.2020.3045441.

[38] M. Wang, S. Qiu, H. Dong, and Y. Wang, “Design an IoT-based building management

cloud platform for green buildings,” Proceedings - 2017 Chinese Automation Congress,

CAC 2017, vol. 2017-January, pp. 5663–5667, Dec. 2017, doi:

10.1109/CAC.2017.8243793.

[39] T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa: Open Source Language

Understanding and Dialogue Management,” Dec. 2017, [Online]. Available:

http://arxiv.org/abs/1712.05181

[40] A. Krasnov, R. R. Maiti, and D. M. Wilborne, “Data Storage Security in Docker,”

Conference Proceedings - IEEE SOUTHEASTCON, vol. 2020-March, Mar. 2020, doi:

10.1109/SOUTHEASTCON44009.2020.9249757.

[41] S. Aouragh, H. Gueddah, and A. Yousfi, “Adaptating the Levenshtein Distance to

Contextual Spelling Correction,” International Journal of Computer Science &

Applications, vol. 12, pp. 127–133, May 2015.

[42] T. Anjali, T. R. Krishnaprasad, and P. Jayakumar, “A Novel Sentiment Classification of

Product Reviews using Levenshtein Distance,” in 2020 International Conference on

Communication and Signal Processing (ICCSP), IEEE, Jul. 2020, pp. 0507–0511. doi:

10.1109/ICCSP48568.2020.9182198.

[43] L. S. Riza, F. Syaiful Anwar, E. F. Rahman, C. U. Abdullah, and S. Nazir, “Natural

Language Processing and Levenshtein Distance for Generating Error Identification Typed

Questions on TOEFL Journal of Computers for Society,” 2020.

[44] V. ~I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and

Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb. 1966.

[45] K. Rinartha and W. Suryasa, “Comparative study for better result on query suggestion of

article searching with MySQL pattern matching and Jaccard similarity,” 2017 5th

International Conference on Cyber and IT Service Management, CITSM 2017, Oct. 2017,

doi: 10.1109/CITSM.2017.8089237.

[46] A. Carlson and I. Fette, “Memory-Based Context-Sensitive Spelling Correction at Web

Scale.”

ISSN 2579-7298 International Journal of Artificial Intelegence Research
 Vol.8, No. 2, December 202, pp. 231-247

 Maulana Ahmad As Shidiqi et.al (Optimizing Text Correction For Voice Based IoT Smart Building Virtual Assistants)

[47] C. Telvis, “Using text analysis techniques to build a predictive text model.” Accessed: May

22, 2023. [Online]. Available: https://rpubs.com/telvis/capstone_report_1

[48] M. Näther, “An In-Depth Comparison of 14 Spelling Correction Tools on a Common

Benchmark,” in Proceedings of the Twelfth Language Resources and Evaluation

Conference, N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi,

H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, and S. Piperidis, Eds.,

Marseille, France: European Language Resources Association, May 2020, pp. 1849–1857.

[Online]. Available: https://aclanthology.org/2020.lrec-1.228

[49] M. N. Samsuri, A. Yuliawati, and I. Alfina, “A Comparison of Distributed, PAM, and Trie

Data Structure Dictionaries in Automatic Spelling Correction for Indonesian Formal Text,”

in 2022 5th International Seminar on Research of Information Technology and Intelligent

Systems (ISRITI), IEEE, Dec. 2022, pp. 525–530. doi:

10.1109/ISRITI56927.2022.10053062.

	1. Introduction
	2. Method
	2.1. Experiment Scenario
	2.2. Text correction method
	2.2.1. Edit Distance
	2.2.2. Jaccard Index
	2.2.3. TheFuzz (FuzzyWuzzy)
	2.2.4. Maximum Likelihood Estimation
	2.2.5. Norvig Algorithm

	3. Results and Discussion
	4. Conclusion
	Acknowledgment
	References

