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I. Introduction 

The resistance to flow in an open channel is related to the magnitude of the friction factor f, 

which is defined by equation (1) [1-4]. 

𝑓 =  
8𝑔𝑅𝑆

𝑉2          (1) 

Where R = hydraulic radius of the wet section, S = energy slope, V = average flow velocity, and g 

= acceleration due to gravity. From Equation (1), one can have equations (2) and (3) 

𝑉 =  √
8𝑔

𝑓
√𝑅𝑆    = 𝐶   √𝑅𝑆          (2) 

𝐶 = √
8𝑔

𝑓
          (3) 

where C = Chezy coefficient. Friction factor f and Chezy coefficient C depend on hydraulically 

smooth or roughly turbulent flow conditions. Flow in natural channels, such as rivers, is generally 

turbulent, and resistance to flow is often related to the Manning coefficient, n [1-4]. The 
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The resistance to flow in an open channel is associated with the value 

of the Darcy-Weisbach friction factor f. For natural channels with a 

movable bed, the f value depends on the grain size of the bed 

materials and the bedforms, such as ripple, dune, or anti-dune. The 

total resistance to flow is the sum of the resistance due to grain 

roughness and bedform. Several researchers have proposed several 

graphs to determine the friction factor value due to the bedforms. Still, 

using these graphs requires graphical interpolation, which is 

inconvenient and difficult to apply to the flow and sediment transport 

calculation. This study proposes two explicit equations, ANN models 

1 and 2, to compute the friction factor due to the bedform based on 

artificial neural networks (ANN) procedure. The data used to build the 

equations were obtained by digitizing the graph proposed by Alan and 

Kennedy. The explicit ANN equations are in the form of a series of 

hyperbolic tangent functions. The resulting equations can predict the 

friction factor value due to bedform satisfactorily. 
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relationship between the average velocity and the Manning coefficient n is expressed by equation 

(4) 

𝑉 =
1

𝑛
𝑅2/3𝑆1/2         (4) 

From equations (2) and (4), the relationship between Chezy C and Manning coefficient n is 

obtained as stated by equation (5) 

𝐶 =
𝑅1/6

𝑛
      𝑜𝑟  𝑛 =

𝑅1/6

𝐶
         (5) 

From equations (3) and (5), the relationship between the friction factor f and the Manning 

coefficient n can be obtained as given by equation (6). 

𝑓 =
8𝑔𝑛2

𝑅1/3            (6) 

For channels with a plane bed flow, the value of C or n is constant and is related to the grain size of 

the bed materials. The value of n is given in some literature [1-4,7]. However, for open channel 

flows with a planned bed consisting of sand and gravel, the Manning coefficient n is related to the 

grain size of the bed material, as stated by equation (7) [5,7]. 

𝑛 =
𝑑1/6

𝐴𝑛
            (7) 

Where d = the diameter of the bed material. For d = d50, the value An = 20 (see Wu [5]). In natural 

channels, the bed material can undergo a process of erosion and sedimentation so that it is not 

fixed. The bedform can form patterns like ripple, dune, and antidune [5-7]. These bedforms will 

increase the resistance to flow—resistance which is a combination of grain roughness and bedform 

[5-7]. Thus, the friction factor f in an open channel with a movable bed is expressed in equation (8) 

[7]. 

𝑓 = 𝑓′ + 𝑓′′          (8) 

Where 𝑓′ and 𝑓′′ are the friction factor due to grain and bedforms, respectively, and f is total 

friction factor [7]. The value of 𝑓′ can be determined by equation (7) [5], but the value of  𝑓′′ 

depends on flow characteristics and sediment parameters. The value of 𝑓′′ is generally determined 

through experiments in the laboratory and observations in the field. Alan and Kennedy (see Yang 

[7]) produced a graph to determine the value of 𝑓′′. They propose a relationship as in equation (9) 

𝑓′′ = 𝐹 ( 
𝑉

(𝑔𝑑50)1/2 ,
𝑅

𝑑50
)          (9) 

They produce a graph of the functional relationship Equation (9). However, the resulting graph 

requires graphical interpolation to get the 𝑓′′ value, making it less convenient and cumbersome for 

practical implementation. Moreover, it isn't easy to include it in hydraulic and sediment transport 

computations. 

This study proposes an explicit functional relationship Equation (9) using the artificial neural 

networks (ANN) procedure. The explicit equation determines the value of 𝑓′′ as a function of the 

parameters 𝑋 = 𝑉/(𝑔𝑑50)1/2  and  𝑌 = 𝑅/𝑑50. The data for constructing the ANN models was 

obtained by digitizing the graph provided by Alan and Kennedy given in Yang [7]. The resulting 

equation can be applied to calculate the friction factor in a channel with a movable bed. 

Furthermore, the following sections describe the structure of the ANN, the method of developing 

explicit ANN equations, data collection for training, validation and testing, analysis, and 

conclusions. 
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II. Methods  

A. Development of Explicit ANN  

 

 

Fig. 1. Configuration ANN used 

The input parameters used are the logarithmic values of 𝑋 = 𝑅/𝑑50and 𝑌 = 𝑉/(𝑔𝑑50)1/2Y, 

while the output parameter is the logarithmic value of 𝑓′′. In this study, a Multi-layer Perceptron 

(MLP) structure is used [8-10], consisting of input, hidden, and output layers. Two ANN models 

are proposed, namely models 1 and 2, using five and ten neurons in the hidden layer. Figure 1 

shows a configuration of the ANN structure used. The explicit ANN equations are based on the 

equation developed by Cahyono [12-13]. Thus, the explicit ANN for models 1 and 2 with the 

structure in Figure 1 can be expressed by equations (10) and (11). 

log (𝑓′′)   =  ∑ 𝐵𝑖 𝑡𝑎𝑛ℎ(𝛼𝑖𝜁 +  𝛽𝑖 𝜂 +  𝜃𝑖)
𝑁
𝑖=1 +  𝐶         (10) 

log (𝑓′′)  = 𝐴1𝑡𝑎𝑛ℎ(𝛼1𝜁 + 𝛽1𝜂 +  𝜃1) + 𝐴2𝑡𝑎𝑛ℎ(𝛼2𝜁 +  𝛽2𝜂 +  𝜃2) +  𝐴3 𝑡𝑎𝑛ℎ(𝛼3𝜁 +  𝛽3 𝜂 +  𝜃3) +
⋯      +  𝐴𝑁 𝑡𝑎𝑛ℎ(𝛼𝑁𝜁 +  𝛽𝑁 𝜂 +  𝜃𝑁) + 𝐵        (11) 

Where 𝜁 and 𝜂 are normalized input parameters X and Y, respectively, αi, βi, θi μi, Ai and B are 

coefficients. The values of coefficient αi, βi, θi and μi in Fig. 1 (i = 1, 2,.., N) and μN+1, and also 

coefficient Ai and B  are determined by optimization technique with the objective function to 

minimize the sum of squared errors defined by Equation (12) in the training process. 

 

𝑚𝑖𝑛 𝑒  =  𝑚𝑖𝑛 ∑ (𝑓𝐴,𝑖
′′ − 𝑓𝐸,𝑖

′′  )
2𝑀

𝑖=1         (12) 

where 𝑓𝐴,𝑖
′′  and 𝑓𝐸,𝑖

′′  are the desired value of 𝑓′′computed by explicit AAN model given by Equation 

(10) and (11), and data obtained by digitizing the chart, respectively.  

B. Statistical Measure 

The performance of models is assessed using the following statistical measures: 

1. The coefficient of determination, R2, of the linear regression line between the 𝑓𝐴,𝑖
′′  and 𝑓𝐸,𝑖

′′   

2. The mean absolute relative error, MRE, defined by:  

𝑀𝑅𝐸 =  
1

𝑀
 ∑ |

𝑓𝐸,𝑖
′′  −𝑓𝐴,𝑖

′′   

𝑓𝐸,𝑖
′′ | 𝑥 100 𝑀

𝑖=1           (13) 

Where 𝑅𝐸 = |
𝑓𝐸,𝑖

′′  −𝑓𝐴,𝑖
′′   

𝑓𝐸,𝑖
′′ | is absolute relative error and M is amount of data. 
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3. The maximum absolute relative error, MAXRE, defined by: 

𝑀𝐴𝑋𝑅𝐸 =  𝑚𝑎𝑥 |
𝑓𝐸,𝑖

′′  −𝑓𝐴,𝑖
′′   

𝑓𝐸,𝑖
′′ |  𝑥 100 % , 𝑓𝑜𝑟  𝑖 = 1, 2, … . , 𝑀             (14) 

III. Results and Discussion 

The data for training, validation and testing of the models are obtained by digitizing the 
charts provided by Alan and Kennedy given in Yang [7] using WebPlotDigitizer software 
(https://automeris.io/WebPlotDigitizer/, accessed on 20 August 2021). The digitization process 

produces 472 data points with X= 𝑉/(𝑔𝑑50)1/2  from 5 to 35 and 𝑌 =  𝑅/𝑑50  from 140 to 40000. 
From these digitized data, 331 were used for training and 141 for validation and testing. The training 
using the MATLAB 2022a program provides coefficients αi, βi, θi and μi for both ANN models 1 and 
2. These coefficient values are used as the initial condition for further optimizations in the MS Excel 
program developed by author. These optimizations are conducted using the objective function of 
minimizing MAXRE as defined in Equation (14) to further minimize the relative error of the 
predicted 𝑓′′. The optimization results produce the coefficients αi, βi, θi, Ai and B for the model 1 
given in Table 1 and the corresponding values for the ANN model 2 are shown in Table 2. Thus, the 
explicit formula for ANN model 1 is given by equation (15) below. 

 

log(𝑓′′) = 𝐴1𝑡𝑎𝑛ℎ(𝛼1𝜁 + 𝛽1𝜂 + 𝜃1) + 𝐴2𝑡𝑎𝑛ℎ(𝛼2𝜁 + 𝛽2𝜂 +  𝜃2) +  𝐴3 𝑡𝑎𝑛ℎ(𝛼3𝜁 +
 𝛽3 𝜂 + 𝜃3) + 𝐴4 𝑡𝑎𝑛ℎ(𝛼4𝜁 + 𝛽4 𝜂 +  𝜃4)  + 𝐴5 𝑡𝑎𝑛ℎ(𝛼5𝜁 + 𝛽5 𝜂 +  𝜃5) + 𝐵         
          (15) 

Where 𝜁 =  0.0667 (𝑉/(𝑔𝑑50)1/2 − 5) − 1 and 𝜂 = 0.8225(log(𝑅/𝑑50) − 2.16) − 1 , with 

coeeficien αi, βi, θi , Ai and D are given in Table 1. The ANN model 2 is defined by Equation (16)  

log(𝑓′′) = 𝐴1𝑡𝑎𝑛ℎ(𝛼1𝜁 + 𝛽1𝜂 + 𝜃1) + 𝐴2𝑡𝑎𝑛ℎ(𝛼2𝜁 + 𝛽2𝜂 +  𝜃2) +  𝐴3 𝑡𝑎𝑛ℎ(𝛼3𝜁 +
 𝛽3 𝜂 + 𝜃3) + 𝐴4 𝑡𝑎𝑛ℎ(𝛼4𝜁 + 𝛽4 𝜂 +  𝜃4)  + 𝐴5 𝑡𝑎𝑛ℎ(𝛼5𝜁 + 𝛽5 𝜂 +  𝜃5) + ⋯ +
  𝐴10 𝑡𝑎𝑛ℎ(𝛼10𝜁 +  𝛽10 𝜂 + 𝜃10) +  𝐵               (16) 

Where 𝜁 and 𝜂 as defined in Equation (15) and with coefficients αi, βi, θi , Ai and D are given in Table 

2.  

Table 1. Coefficients of explicit ANN model 1 defined by Equation (15) 

  Coefficient 

i αi βi θi Ai B 

1 -3.6517 8.0011 4.2222 0.9623 -2.0872 

2 3.4994 -0.7895 -2.2512 -0.1274   

3 0.8684 -0.1008 0.4790 -0.8600   

4 3.0195 5.4351 6.2120 1.5260   

5 -2.9787 -4.4793 -5.6210 1.7302   

 

Table 2. Coefficients of explicit ANN model 1 defined by Equation (15) 

  Coefficient 

i αi βi θi Ai B 

1 9.9067 2.8338 -10.6335 -0.0933 -2.6321 

2 11.0880 0.2176 -4.1546 -0.0574   

3 -1.3734 8.0810 6.4734 3.0706   

4 -4.2480 8.5534 4.2440 0.5910   

5 41.7648 -54.8613 -14.0334 -0.0414   

5 -28.8282 -16.9178 -35.1380 0.0698   
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7 -1.8056 -9.1073 3.1834 0.0158   

8 1.6909 2.9169 1.7905 -0.0718   

9 1.0235 -0.2366 0.6529 -0.7198   

10 -0.7727 9.6819 8.3334 -2.2663   

 

The simulation results for the training, validation, and testing for the ANN models 1 and 2 produce 

the coefficient of determination R2, MRE and MAXRE as shown in Table 3. It was discovered that 

both ANN models 1 and 2 produce satisfactory results in terms of R2, MRE and MAXRE with the 

MRE observed to have varied from 1.1 % in training and to 1.6 % for training, validation, and testing. 

Table 3. Statistical measures of models 1 and 2 for training and validation & testing data 

  Training Validation and Testing 

ANN MODEL 
R2 MRE MAXRE R2 MRE MAXRE 

 (%) (%)  (%) (%) 

Model 1 (2-5-1) 0.9942 1.61 10.11 0.9877 1.59 10.44 

Model 2 (2-10-1) 0.9974 1.10 7.88 0.9956 1.10 6.55 

 

Figs. 2 and 3 show the scattering plot of the results of training as well as validation & testing for 

models 1 and 2, respectively. Simulations are also carried out for various X and Y values and the 

results are compared with the digitized data. Fig. 4 shows the curves obtained using the explicit 

equation (15) compared to the digitized data. The results for model 2 are given in Fig. 5. The 

results in Figs. 4 and 5 show that the curves generated by the ANN equations (15) and (16) almost 

pass through all the data points. Figs. 4 and 5 show that the expression ANN model (16) and 16) is 

very accurate in predicting the value of 𝑓′′ 

  

(a)         (b) 
Fig. 2. Scattering plot of simulation results of model 1 for (a) training and (b) validation and testing data. 
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(a)        (b) 

Fig. 3. Scattering plot of simulation results of model 2 for (a) training and (b) validation and testing data. 

 

Fig. 4. Comparison between curves of the explicit ANN model 1 defined by Equation (15) and the digitized 

data for various X values. 
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Figure 5. Comparison between curves of the explicit ANN model 2 defined by Equation (16) and 

the digitized data for various X values. 

IV. Application of Explicit Equation 

The following is an example of the implementation of an explicit ANN. Given an open 

channel with parameters d50 = 1 mm, R = 3 m, and S = 0.0002 and determine the flow velocity. 

For fixed bed conditions, based on Equation (7), the Manning coefficient value is n' = 

(0.001)^1/6/20 = 0.0158 and the resulting flow velocity based on Equation (4) is V = 1.86 m/s. 

However, the flow velocity for the movable bed condition is obtained by iterating the following 

Equation (17). 

𝑉 = 𝐶 √𝑅𝑆 = √
8𝑔

𝑓′+𝑓′′   √𝑅𝑆         17) 

The value of 𝑓′′ is determined using equation (15) or (16). Equation (15) or (16) depends on V, so 

Equation (17) is an implicit equation in V. Iteration solution using the Secant method [14] gives a 

value of V = 0.589 m/s. It is seen that the bedform formation will increase the resistance to flow, 

which in turn reduces the flow velocity. 

V. Conclusion 

This study proposes two explicit equations, models 1 and 2, to determine the friction factor 
f in an open channel with a movable bed. The equation is derived using the ANN procedure. The 
data used to build the ANN model is taken from the chart proposed by Alan and Kennedy given by 
Yang [7] through digitization. The proposed explicit ANN equation is a series function, namely the 

value of log(𝒇′′) as a hyperbolic tangent function of the parameter  𝜻=  𝟎. 𝟎𝟔𝟔𝟕 (𝑽/(𝒈𝒅𝟓𝟎)𝟏/𝟐 −

𝟓) − 𝟏 and  𝜼 =  𝟎. 𝟖𝟐𝟐𝟓(𝐥𝐨𝐠(𝑹/𝒅𝟓𝟎) − 𝟐. 𝟏𝟔) − 𝟏 .The number of functions for models 1 and 2 

is five and ten. The proposed ANN models can accurately predict the friction factor value due to 
bedform 𝒇′′ compared to digitized data. The proposed explicit ANN models can be easily 
combined in the flow calculation through iteration using the Secant method. The calculation 
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example shows that the bedform effect can increase the resistance to flow and reduce the flow 
velocity significantly. 
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