Knowledge Graph Construction for Rice Pests and Diseases

(1) * Muhammad Ariful Furqon Mail (Universitas Jember, Indonesia)
(2) Saiful Bukhori Mail (Universitas Jember, Indonesia)
*corresponding author

Abstract


The agricultural industry in Indonesia confronts the simultaneous task of augmenting food production to satisfy escalating demand while proficiently handling crop losses caused by pests and diseases.  This study introduces a novel approach that leverages knowledge graphs to transform traditional, expert-based knowledge into a dynamic and interconnected system for addressing these agricultural challenges. The study delineates constructing a comprehensive knowledge graph, commencing with data extraction with SPARQL queries, and progressing to ontology design, object property and datatype property specification, and instance generation. The resultant knowledge graph not only serves as an organized archive for pest and disease information but also gives a systematic framework for the integration, analysis, and decision-making of data in agriculture. This knowledge graph adds to the broader junction of data science and agriculture by improving the diagnosis, prevention, and control of rice diseases.

Keywords


Knowledge graph, Rice diseases, Rice Pests, Ontology

   

DOI

https://doi.org/10.29099/ijair.v7i1.1022
      

Article metrics

10.29099/ijair.v7i1.1022 Abstract views : 102 | PDF views : 74

   

Cite

   

Full Text

Download

References


M. Jamaludin, “Indonesia’s Food Security Challenges: How Food SOE Optimizes its Role?,†Research Horizon, vol. 2, no. 3, pp. 394–401, 2022.

C. Duffy et al., “Agroforestry contributions to smallholder farmer food security in Indonesia,†Agroforestry Systems, vol. 95, no. 6, pp. 1109–1124, Aug. 2021, doi: 10.1007/S10457-021-00632-8/TABLES/3.

Sudirman, A. P. Windarto, and A. Wanto, “Data mining tools | rapidminer: K-means method on clustering of rice crops by province as efforts to stabilize food crops in Indonesia,†IOP Conf Ser Mater Sci Eng, vol. 420, no. 1, p. 012089, Sep. 2018, doi: 10.1088/1757-899X/420/1/012089.

R. P. L. Durgabai, P. Bhargavi, and S. Jyothi, “PEST MANAGEMENT USING MACHINE LEARNING ALGORITHMS: A REVIEW,†International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR), vol. 8, no. 1, 2018, [Online]. Available: www.tjprc.org

L. Xiaoxue, “Review and Trend Analysis of Knowledge Graphs for Crop Pest and Diseases,†IEEE Access, vol. 7, pp. 62251–62264, 2019, doi: 10.1109/ACCESS.2019.2915987.

B. D. Grieve et al., “The challenges posed by global broadacre crops in delivering smart agri-robotic solutions: A fundamental rethink is required,†Glob Food Sec, vol. 23, pp. 116–124, Dec. 2019, doi: 10.1016/J.GFS.2019.04.011.

R. H. L. Ip, L. M. Ang, K. P. Seng, J. C. Broster, and J. E. Pratley, “Big data and machine learning for crop protection,†Comput Electron Agric, vol. 151, pp. 376–383, Aug. 2018, doi: 10.1016/J.COMPAG.2018.06.008.

K. A. Garrett, “Big data insights into pest spread,†Nature Climate Change 2013 3:11, vol. 3, no. 11, pp. 955–957, Oct. 2013, doi: 10.1038/nclimate2041.

S. Himesh et al., “Digital revolution and Big Data: A new revolution in agriculture,†CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, vol. 13, 2018, doi: 10.1079/PAVSNNR201813021.

J. C. Zhao and J. X. Guo, “Big data analysis technology application in agricultural intelligence decision system,†2018 3rd IEEE International Conference on Cloud Computing and Big Data Analysis, ICCCBDA 2018, pp. 209–212, Jun. 2018, doi: 10.1109/ICCCBDA.2018.8386513.

H. Murmu, M. Nazirul, I. Sarker, S. Islam, and E. Rozario, “Role of Big Data On Digital Farming,†Article in International Journal of Scientific & Technology Research, 2020, Accessed: Feb. 04, 2023. [Online]. Available: www.ijstr.org

K. H. Coble, A. K. Mishra, S. Ferrell, and T. Griffin, “Big Data in Agriculture: A Challenge for the Future,†Appl Econ Perspect Policy, vol. 40, no. 1, pp. 79–96, Mar. 2018, doi: 10.1093/AEPP/PPX056.

Y. Liu, “DKG-PIPD: A Novel Method about Building Deep Knowledge Graph,†IEEE Access, vol. 9, pp. 137295–137308, 2021, doi: 10.1109/ACCESS.2021.3116467.

H. Zhang, “Intelligent Retrieval Method of Agricultural Knowledge Based on Semantic Knowledge Graph,†Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, vol. 52, pp. 156–163, 2021, doi: 10.6041/j.issn.1000-1298.2021.S0.020.

Y. Chen, J. Kuang, D. Cheng, J. Zheng, M. Gao, and A. Zhou, “AgriKG: an agricultural knowledge graph and its applications,†in International conference on database systems for advanced applications, 2019, pp. 533–537.

M. Medici, D. Dooley, and M. Canavari, “PestOn: An Ontology to Make Pesticides Information Easily Accessible and Interoperable,†Sustainability 2022, Vol. 14, Page 6673, vol. 14, no. 11, p. 6673, May 2022, doi: 10.3390/SU14116673.

M. A. Furqon, N. Fadilah Najwa, D. Hermansyah, and M. Zarkasi, “Jurnal Politeknik Caltex Riau Knowledge Graph Modeling in Healthcare: A Bibliometric Analysis,†2022. [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/

L. Wang, J. Jiang, J. Song, and J. Liu, “A Weakly-Supervised Method for Named Entity Recognition of Agricultural Knowledge Graphâ€, doi: 10.32604/iasc.2023.036402.

M. A. Furqon, G. Faisal, and N. F. Najwa, “Graph Database Modelling on Malay Architecture IFC Data,†in Proceedings Article, Alanya Hamdullah Emin Paşa University, 2021, pp. 50–55. doi: 10.38027/ICCAUA2021139n7.

H. Yu, J. Shen, C. Bi, J. Liang, and H. Chen, “Intelligent diagnostic system for rice diseases and pests based on knowledge graph,†Journal of South China Agricultural University, vol. 42, no. 5, pp. 105–116, Sep. 2022, doi: 10.7671/J.ISSN.1001-411X.202101010.

J. Dou, J. Qin, Z. Jin, and Z. Li, “Knowledge graph based on domain ontology and natural language processing technology for Chinese intangible cultural heritage,†J Vis Lang Comput, vol. 48, pp. 19–28, Oct. 2018, doi: 10.1016/J.JVLC.2018.06.005.

M. Ã. Rodríguez-García, F. García-Sánchez, and R. Valencia-García, “Knowledge-Based System for Crop Pests and Diseases Recognition,†Electronics 2021, Vol. 10, Page 905, vol. 10, no. 8, p. 905, Apr. 2021, doi: 10.3390/ELECTRONICS10080905.

Y.-X. Shi et al., “Constructing Crop Portraits Based on Graph Databases Is Essential to Agricultural Data Mining,†Information 2021, Vol. 12, Page 227, vol. 12, no. 6, p. 227, May 2021, doi: 10.3390/INFO12060227.

H. Zhang, H. Si, X. Ma, L. Xi, and X. Xu, “Research and Application of Agriculture Knowledge Graph,†ACM International Conference Proceeding Series, pp. 680–688, Oct. 2021, doi: 10.1145/3501409.3501531.

W. Jearanaiwongkul, C. Anutariya, and F. Andres, “A Semantic-Based Framework for Rice Plant Disease Management: Identification, Early Warning, and Treatment Recommendation Using Multiple Observations,†New Gener Comput, vol. 37, no. 4, pp. 499–523, Dec. 2019, doi: 10.1007/S00354-019-00072-0/FIGURES/8.

A. Durrant, M. Markovic, D. Matthews, D. May, G. Leontidis, and J. Enright, “How might technology rise to the challenge of data sharing in agri-food?,†Glob Food Sec, vol. 28, p. 100493, Mar. 2021, doi: 10.1016/J.GFS.2021.100493.

T. Trouillon, C. R. Dance, F. E. Gaussier, J. Welbl, S. Riedel, and G. Bouchard, “Knowledge Graph Completion via Complex Tensor Factorization,†Journal of Machine Learning Research, vol. 18, pp. 1–38, 2017, Accessed: Feb. 06, 2023. [Online]. Available: https://github.com/ttrouill/complex

S. Auer, A. Kasprzik, V. Kovtun, M. Stocker, M. Prinz, and M. E. Vidal, “Towards a knowledge graph for science,†in ACM International Conference Proceeding Series, Association for Computing Machinery, Jun. 2018. doi: 10.1145/3227609.3227689.

J. Wang et al., “A Survey on Application of Knowledge Graph,†J Phys Conf Ser, vol. 1487, no. 1, p. 012016, Mar. 2020, doi: 10.1088/1742-6596/1487/1/012016.

B. Abu-Salih, “Domain-specific knowledge graphs: A survey,†Journal of Network and Computer Applications, vol. 185, p. 103076, Jul. 2021, doi: 10.1016/J.JNCA.2021.103076.

H. Chen and X. Luo, “An automatic literature knowledge graph and reasoning network modeling framework based on ontology and natural language processing,†Advanced Engineering Informatics, vol. 42, p. 100959, Oct. 2019, doi: 10.1016/J.AEI.2019.100959.

C. M. Fonseca, D. Porello, G. Guizzardi, J. P. A. Almeida, and N. Guarino, “Relations in ontology-driven conceptual modeling,†Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11788 LNCS, pp. 28–42, 2019, doi: 10.1007/978-3-030-33223-5_4/COVER.

S. Ferilli, “Integration Strategy and Tool between Formal Ontology and Graph Database Technology,†Electronics 2021, Vol. 10, Page 2616, vol. 10, no. 21, p. 2616, Oct. 2021, doi: 10.3390/ELECTRONICS10212616.

I. Osman, S. Ben Yahia, and G. Diallo, “Ontology Integration: Approaches and Challenging Issues,†Information Fusion, vol. 71, pp. 38–63, Jul. 2021, doi: 10.1016/J.INFFUS.2021.01.007.

A. Ismayilov, D. Kontokostas, S. Auer, J. Lehmann, and S. Hellmann, “Wikidata through the eyes of DBpedia,†Semant Web, vol. 9, no. 4, pp. 493–503, Jan. 2018, doi: 10.3233/SW-170277.

S. G. Pillai, L. K. Soon, and S. C. Haw, “Comparing DBpedia, Wikidata, and YAGO for web information retrieval,†Lecture Notes in Networks and Systems, vol. 67, pp. 525–535, 2019, doi: 10.1007/978-981-13-6031-2_40/COVER.

C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So Far,†Linking the World’s Information, pp. 115–143, Jul. 2023, doi: 10.1145/3591366.3591378.

X. Chen, S. Jia, and Y. Xiang, “A review: Knowledge reasoning over knowledge graph,†Expert Syst Appl, vol. 141, p. 112948, Mar. 2020, doi: 10.1016/J.ESWA.2019.112948.

S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A Survey on Knowledge Graphs: Representation, Acquisition, and Applications,†IEEE Trans Neural Netw Learn Syst, vol. 33, no. 2, pp. 494–514, Feb. 2022, doi: 10.1109/TNNLS.2021.3070843.

M. El Asikri, S. Krit, and H. Chaib, “A brief survey of creating semantic web content with protégé,†ACM International Conference Proceeding Series, Jun. 2018, doi: 10.1145/3234698.3234704.

L. Yang, K. Cormican, and M. Yu, “Ontology-based systems engineering: A state-of-the-art review,†Comput Ind, vol. 111, pp. 148–171, Oct. 2019, doi: 10.1016/J.COMPIND.2019.05.003.

M. Husáková and V. Bureš, “Formal Ontologies in Information Systems Development: A Systematic Review,†Information 2020, Vol. 11, Page 66, vol. 11, no. 2, p. 66, Jan. 2020, doi: 10.3390/INFO11020066.

P. Hashemi, A. Khadivar, and M. Shamizanjani, “Developing a domain ontology for knowledge management technologies,†Online Information Review, vol. 42, no. 1, pp. 28–44, 2018, doi: 10.1108/OIR-07-2016-0177/FULL/XML.

P. Chhim, R. B. Chinnam, and N. Sadawi, “Product design and manufacturing process based ontology for manufacturing knowledge reuse,†J Intell Manuf, vol. 30, no. 2, pp. 905–916, Feb. 2019, doi: 10.1007/S10845-016-1290-2/FIGURES/10.

N. Komninos, C. Bratsas, C. Kakderi, and P. Tsarchopoulos, “Smart city ontologies: Improving the effectiveness of smart city applications,†Journal of Smart Cities, vol. 1, no. 1, pp. 31–46, Mar. 2019, doi: 10.18063/JSC.2015.01.001.

C. Steinmetz, A. Rettberg, F. G. C. Ribeiro, G. Schroeder, and C. E. Pereira, “Internet of things ontology for digital twin in cyber physical systems,†Brazilian Symposium on Computing System Engineering, SBESC, vol. 2018-November, pp. 154–159, Jul. 2018, doi: 10.1109/SBESC.2018.00030.

X. Hao et al., “Construction and Application of a Knowledge Graph,†Remote Sensing 2021, Vol. 13, Page 2511, vol. 13, no. 13, p. 2511, Jun. 2021, doi: 10.3390/RS13132511.

M. Aldwairi, M. Jarrah, N. Mahasneh, and B. Al-khateeb, “Graph-based data management system for efficient information storage, retrieval and processing,†Inf Process Manag, vol. 60, no. 2, p. 103165, Mar. 2023, doi: 10.1016/J.IPM.2022.103165.

P. Kapsalis, G. Kormpakis, K. Alexakis, E. Karakolis, S. Mouzakitis, and D. Askounis, “A Reasoning Engine Architecture for Building Energy Metadata Management,†13th International Conference on Information, Intelligence, Systems and Applications, IISA 2022, 2022, doi: 10.1109/IISA56318.2022.9904419.

W. Jiang, L. Yan, Y. Tu, X. Zhou, and Z. Ma, “PG-explorer: Resource Description Framework data exploration with property graphs,†Expert Syst Appl, vol. 198, p. 116789, Jul. 2022, doi: 10.1016/J.ESWA.2022.116789.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

The International Journal of Artificial Intelligence Research

Organized by: Departemen Teknik Informatika
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
phone. +62725-7850671
Fax. +62725-7850671

Email: jurnal.ijair@gmail.com

View IJAIR Statcounter

Creative Commons License
This work is licensed under  Creative Commons Attribution-ShareAlike 4.0 International License.