(2) Anis Fitri Nurmasruriyah (Universitas Buana Perjuangan Karawang, Indonesia)
(3) Ahmad Fauzi (Universitas Buana Perjuangan Karawang, Indonesia)
(4) Nunung Nurjanah (Universitas Buana Perjuangan Karawang, Indonesia)
(5) Arphilia Nur Rani (Universitas Buana Perjuangan Karawang)
*corresponding author
AbstractAccording to the World Health Organization (WHO), there are around 7 million breast cancer patients each year, with about 5 million of them dying. Based on Globocan 2018 data, the death rate from breast cancer averages 17 per 100,000 people with incidents of 2.1 per 100,000 people attacking women in Indonesia. Hence breast cancer causes spread genetic mutations in the DNA of breast epithelial cells that radiate to the ducts. The purpose of this study was to classify the type of cancer (benign or malignant) that was suffered. The difference between previous research and this research is in the algorithm testing method chosen. In this study the algorithm used is SVM and Logistic Regression by applying the SMOTE technique. The K-fold cross validation method is used in testing this research. The accuracy results obtained are 1.0, precision 1.0 and recall 1.0.While the highest evaluation results for the model without SMOTE were Accuracy 0.97, precision 1.0 and recall 0.90 with the LR method. So based on the results of the comparison, it shows that the evaluation of models using SMOTE tends to be higher than models without SMOTE
KeywordsBreast cancer Regression Logistics SVM K-Fold cross validation
|
DOIhttps://doi.org/10.29099/ijair.v7i1.1.1114 |
Article metrics10.29099/ijair.v7i1.1.1114 Abstract views : 336 | PDF views : 92 |
Cite |
Full TextDownload |
References
J. W. Zhu, P. Charkhchi, S. Adekunte, and M. R. Akbari, “What Is Known about Breast Cancer in Young Women?,” Cancers (Basel)., vol. 15, no. 6, p. 1917, Mar. 2023, doi: 10.3390/cancers15061917.
M. A. Elsadig, A. Altigani, and H. T. Elshoush, “Breast cancer detection using machine learning approaches: a comparative study,” Int. J. Electr. Comput. Eng., vol. 13, no. 1, p. 736, Feb. 2023, doi: 10.11591/ijece.v13i1.pp736-745.
S. Rana, D. Kaushik, A. Singh, D. Gautam, J. Rai, and J. S. Rathore, “Aptamer: A theranostic approach towards breast cancer,” Clin. Immunol. Commun., vol. 3, pp. 61–73, Dec. 2023, doi: 10.1016/j.clicom.2023.06.002.
M. M. Rahman, Z. Ferdousi, P. Saha, and R. A. Mayuri, “A Machine Learning Approach to Predict Breast Cancer Using Boosting Classifiers,” Indian J. Comput. Sci. Eng., vol. 14, no. 3, pp. 409–415, Jun. 2023, doi: 10.21817/indjcse/2023/v14i3/231403009.
M. G. Fazliddinovna, “Oncopsychology of Patients with Breast Cancer after Treatment,” J. Nat. Med. Educ., vol. 2, no. 2, pp. 111–116, 2023.
B. Sain et al., “Clinico-Pathological Factors Determining Recurrence of Phyllodes Tumors of the Breast: The 25-Year Experience at a Tertiary Cancer Centre,” J. Pers. Med., vol. 13, no. 5, p. 866, May 2023, doi: 10.3390/jpm13050866.
L. Yang, S. Peng, R. O. Yahya, and L. Qian, “Cancer detection in breast cells using a hybrid method based on deep complex neural network and data mining,” J. Cancer Res. Clin. Oncol., Jul. 2023, doi: 10.1007/s00432-023-05191-2.
P. Dikshit, B. Dey, A. Shukla, A. Singh, T. Chadha, and V. K. Sehgal, “Prediction of Breast Cancer using Machine Learning Techniques,” ACM Int. Conf. Proceeding Ser., no. April 2019, pp. 382–387, 2022, doi: 10.1145/3549206.3549274.
Dr. Nikhat Akhtar, Dr. Hemlata Pant, Apoorva Dwivedi, Vivek Jain, and Dr. Yusuf Perwej, “A Breast Cancer Diagnosis Framework Based on Machine Learning,” Int. J. Sci. Res. Sci. Eng. Technol., pp. 118–132, May 2023, doi: 10.32628/IJSRSET2310375.
S. R. Mary, R. M. Prasad, and R. Suguna, “A feature selection using improved dragonfly algorithm with support vector machine for breast cancer prediction,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., pp. 1–11, May 2023, doi: 10.1080/21681163.2023.2212086.
A. A. Sukmandhani, Lukas, Y. Heryadi, W. Suparta, and A. Wibowo, “Classification Algorithm Analysis for Breast Cancer,” E3S Web Conf., vol. 388, p. 02012, May 2023, doi: 10.1051/e3sconf/202338802012.
M. Kirola, M. Memoria, M. Shuaib, K. Joshi, S. Alam, and F. Alshanketi, “A Referenced Framework on New Challenges and Cutting-Edge Research Trends for Big-Data Processing Using Machine Learning Approaches,” in 2023 International Conference on Smart Computing and Application (ICSCA), Feb. 2023, pp. 1–5. doi: 10.1109/ICSCA57840.2023.10087686.
K. Khadijah and R. Kusumaningrum, “Ensemble Classifier untuk Klasifikasi Kanker Payudara,” It J. Res. Dev., vol. 4, no. 1, pp. 61–71, 2019, doi: 10.25299/itjrd.2019.vol4(1).3540.
H. Kaur, “Dense Convolutional Neural Network Based Deep Learning Framework for the Diagnosis of Breast Cancer,” Wirel. Pers. Commun., Jul. 2023, doi: 10.1007/s11277-023-10678-9.
J. Y. You, S. Park, E.-G. Lee, and E. S. Lee, “Detection and Diagnosis of Breast Cancer,” in A Practical Guide to Breast Cancer Treatment, Singapore: Springer Nature Singapore, 2023, pp. 1–17. doi: 10.1007/978-981-19-9044-1_1.
F. T. Liza, M. C. Das, P. P. Pandit, A. Farjana, A. M. Islam, and F. Tabassum, “Machine Learning-Based Relative Performance Analysis for Breast Cancer Prediction,” in 2023 IEEE World AI IoT Congress (AIIoT), Jun. 2023, pp. 0007–0012. doi: 10.1109/AIIoT58121.2023.10174469.
D. P. M. Abellana and D. M. Lao, “A new univariate feature selection algorithm based on the best–worst multi-attribute decision-making method,” Decis. Anal. J., vol. 7, p. 100240, Jun. 2023, doi: 10.1016/j.dajour.2023.100240.
X. Li, M. Liu, K. Wang, Z. Liu, and G. Li, “Data cleaning method for the process of acid production with flue gas based on improved random forest,” Chinese J. Chem. Eng., vol. 59, pp. 72–84, Jul. 2023, doi: 10.1016/j.cjche.2022.12.013.
A. Lia Hananto et al., “Analysis of Drug Data Mining with Clustering Technique Using K-Means Algorithm,” J. Phys. Conf. Ser., vol. 1908, no. 1, 2021, doi: 10.1088/1742-6596/1908/1/012024.
A. L. Hananto, A. P. Nardilasari, A. Fauzi, A. Hananto, B. Priyatna, and A. Y. Rahman, “Best Algorithm in Sentiment Analysis of Presidential Election in Indonesia on Twitter,” Orig. Res. Pap. Int. J. Intell. Syst. Appl. Eng. IJISAE, vol. 2023, no. 6s, pp. 473–481, 2023, [Online]. Available: www.ijisae.org
F. Aryanto, A. Fauzi, A. Fitri Nur Masruriyah, A. Lia Hananto, and Darmansyah, “Sentiment Analysis Of Vaccination Using The K-Nearest Neighbor Algorithm,” Edutran Comput. Sci. Inf. Technol., vol. 1, no. 1, pp. 34–41, 2023, doi: 10.59805/ecsit.v1i1.6.
N. An?eli? and S. Baressi Šegota, “Development of Symbolic Expressions Ensemble for Breast Cancer Type Classification Using Genetic Programming Symbolic Classifier and Decision Tree Classifier,” Cancers (Basel)., vol. 15, no. 13, p. 3411, Jun. 2023, doi: 10.3390/cancers15133411.
C. B. Sonjaya, A. Fitri, N. Masruriyah, and D. Sulistya, “The Performance Comparison of Classification Algorithm in Order to Detecting Heart Disease,” vol. 5, no. 2, pp. 166–175, 2022.
I. Candradewi, A. Harjoko, and B. A. A. Sumbodo, “Intelligent Traffic Monitoring Systems: Vehicle Type Classification Using Support Vector Machine,” Int. J. Artif. Intell. Res., vol. 5, no. 1, pp. 78–90, 2021, doi: 10.29099/ijair.v5i1.201.
M. Wati, R. Alfred, A. Ery, and A. Ardi, “An extraction of shapes and support vector machine methods for identification of decorative wall ‘ Lamin ’ motifs of the Dayak Kenyah Pampang tribe,” vol. 7, no. 1, 2023.
I. Kurniawan et al., “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 10, no. 1, pp. 731–740, 2023, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/3582
F. G. Altin, ?. Budak, and F. Özcan, “Predicting the amount of medical waste using kernel-based SVM and deep learning methods for a private hospital in Turkey,” Sustain. Chem. Pharm., vol. 33, p. 101060, Jun. 2023, doi: 10.1016/j.scp.2023.101060.
A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM,” vol. 7, no. 1, pp. 11–18, 2024.
T. Meenakshi, “Automatic Detection of Diseases in Leaves of Medicinal Plants Using Modified Logistic Regression Algorithm,” Wirel. Pers. Commun., vol. 131, no. 4, pp. 2573–2597, Aug. 2023, doi: 10.1007/s11277-023-10555-5.
Y. Song et al., “Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: A retrospective study,” CNS Neurosci. Ther., vol. 29, no. 1, pp. 158–167, Jan. 2023, doi: 10.1111/cns.13991.
J. B. B. Bell, A. Rajkumar, S. M. C. Vigila, M. G. A. Selvan, and J. S. Binoj, “Development of novel methodology for gene identification-based classification of leukaemia disorder,” Res. Biomed. Eng., Jun. 2023, doi: 10.1007/s42600-023-00289-5.
X. Tang et al., “Explainable multi-task learning for multi-modality biological data analysis,” Nat. Commun., vol. 14, no. 1, 2023, doi: 10.1038/s41467-023-37477-x.
K. Makimoto et al., “Comparison of Feature Selection Methods and Machine Learning Classifiers for Predicting Chronic Obstructive Pulmonary Disease Using Texture-Based CT Lung Radiomic Features,” Acad. Radiol., vol. 30, no. 5, pp. 900–910, May 2023, doi: 10.1016/j.acra.2022.07.016.
J. L. Leevy, J. M. Johnson, J. Hancock, and T. M. Khoshgoftaar, “Threshold optimization and random undersampling for imbalanced credit card data,” J. Big Data, vol. 10, no. 1, p. 58, May 2023, doi: 10.1186/s40537-023-00738-z.
Y. Widyaningsih, G. P. Arum, and K. Prawira, “Aplikasi K-Fold Cross Validation Dalam Penentuan Model Regresi Binomial Negatif Terbaik,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 2, pp. 315–322, 2021, doi: 10.30598/barekengvol15iss2pp315-322.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
________________________________________________________
The International Journal of Artificial Intelligence Research
Organized by: Departemen Teknik Informatika
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
Email: jurnal.ijair@gmail.com
This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.