Journal Unique Visitors Forecasting Based on Multivariate Attributes Using CNN

(1) Aderyan Reynaldi Fahrezza Dewandra Mail (Dept Electrical Engineering, State University of Malang, Malang)
(2) * Aji Prasetya Wibawa Mail (Scopus ID : 56012410400; Dept Electrical Engineering, State University of Malang, Malang, Indonesia)
(3) Utomo Pujianto Mail (Dept Electrical Engineering, State University of Malang, Malang)
(4) Agung Bella Putra Utama Mail (Department of Electrical Engineering, Universitas Negeri Malang, Indonesia)
(5) Andrew Nafalski Mail (University of South Australia, Australia)
*corresponding author

Abstract


Forecasting is needed in various problems, one of which is forecasting electronic journals unique visitors. Although forecasting cannot produce very accurate predictions, using the proper method can reduce forecasting errors. In this research, forecasting is done using the Deep Learning method, which is often used to process two-dimensional data, namely convolutional neural network (CNN). One-dimensional CNN comes with 1D feature extraction suitable for forecasting 1D time-series problems. This study aims to determine the best architecture and increase the number of hidden layers and neurons on CNN forecasting results. In various architectural scenarios, CNN performance was measured using the root mean squared error (RMSE). Based on the study results, the best results were obtained with an RMSE value of 2.314 using an architecture of 2 hidden layers and 64 neurons in Model 1. Meanwhile, the significant effect of increasing the number of hidden layers on the RMSE value was only found in Model 1 using 64 or 256 neurons.


   

DOI

https://doi.org/10.29099/ijair.v6i1.274
      

Article metrics

10.29099/ijair.v6i1.274 Abstract views : 444 | PDF views : 82

   

Cite

   

Full Text

Download

References


Z. Hao, V. P. Singh, and Y. Xia, “Seasonal Drought Prediction: Advances, Challenges, and Future Prospects,” Rev. Geophys., vol. 56, no. 1, pp. 108–141, Mar. 2018, doi: 10.1002/2016RG000549.

R. Majid, “Advances in Statistical Forecasting Methods: An Overview,” Econ. Aff., vol. 63, no. 4, 2018, doi: 10.30954/0424-2513.4.2018.5.

F. Petropoulos and S. Makridakis, “Forecasting the novel coronavirus COVID-19,” PLoS One, vol. 15, no. 3, pp. 1–8, 2020, doi: 10.1371/journal.pone.0231236.

A. Prasetya Wibawa, W. Lestar, A. Bella Putra Utama, I. Tri Saputra, and Z. Nabila Izdihar, “Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik,” Indones. J. Data Sci., vol. 1, no. 3, Dec. 2020, doi: 10.33096/ijodas.v1i3.15.

M. A. B. Ferdinand, A. P. Wibawa, I. A. E. Zaeni, and H. A. Rosyid, “Single Exponential Smoothing-Multilayer Perceptron Untuk Peramalan Pengunjung Unik Jurnal Elektronik,” Mob. Forensics, vol. 2, no. 2, pp. 62–70, 2020, doi: 10.12928/mf.v2i2.2034.

A. P. Wibawa, I. T. Saputra, A. B. P. Utama, W. Lestari, and Z. N. Izdihar, “Long Short-Term Memory to Predict Unique Visitors of an Electronic Journal,” in 2020 6th International Conference on Science in Information Technology: Embracing Industry 4.0: Towards Innovation in Disaster Management, ICSITech 2020, Oct. 2020, pp. 176–179, doi: 10.1109/ICSITech49800.2020.9392031.

A. P. Wibawa, R. R. Ula, A. B. P. Utama, M. Y. Chuttur, A. Pranolo, and Haviluddin, “Forecasting e-Journal Unique Visitors using Smoothed Long Short-Term Memory,” in 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Oct. 2021, pp. 609–613, doi: 10.1109/iceeie52663.2021.9616628.

A. P. Wibawa, Z. N. Izdihar, A. B. P. Utama, L. Hernandez, and Haviluddin, “Min-Max Backpropagation Neural Network to Forecast e-Journal Visitors,” 3rd Int. Conf. Artif. Intell. Inf. Commun. ICAIIC 2021, pp. 52–58, Apr. 2021, doi: 10.1109/ICAIIC51459.2021.9415197.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A Guide to Convolutional Neural Networks for Computer Vision,” Synth. Lect. Comput. Vis., vol. 8, no. 1, pp. 1–207, Feb. 2018, doi: 10.2200/s00822ed1v01y201712cov015.

S. Cavalli and M. Amoretti, “CNN-based multivariate data analysis for bitcoin trend prediction,” Appl. Soft Comput., vol. 101, p. 107065, 2021, doi: 10.1016/j.asoc.2020.107065.

G. T. Taye, H. J. Hwang, and K. M. Lim, “Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features,” Sci. Rep., vol. 10, no. 1, pp. 1–7, 2020, doi: 10.1038/s41598-020-63566-8.

Z. Zhang, J. Tian, W. Huang, L. Yin, W. Zheng, and S. Liu, “A Haze Prediction Method Based on One-Dimensional Convolutional Neural Network,” Atmosphere (Basel)., vol. 12, no. 10, pp. 1–12, 2021, doi: 10.3390/atmos12101327.

R. Fukuoka, H. Suzuki, T. Kitajima, A. Kuwahara, and T. Yasuno, “Wind Speed Prediction Model Using LSTM and 1D-CNN,” J. Signal Process., vol. 22, no. 4, pp. 207–210, 2018, doi: 10.2299/jsp.22.207.

A. Gumaei, M. M. Hassan, M. R. Hassan, A. Alelaiwi, and G. Fortino, “A Hybrid Feature Extraction Method with Regularized Extreme Learning Machine for Brain Tumor Classification,” IEEE Access, vol. 7, pp. 36266–36273, 2019, doi: 10.1109/ACCESS.2019.2904145.

S. Grover, S. Bhartia, Akshama, A. Yadav, and K. R. Seeja, “Predicting Severity of Parkinson’s Disease Using Deep Learning,” Procedia Comput. Sci., vol. 132, no. Iccids, pp. 1788–1794, 2018, doi: 10.1016/j.procs.2018.05.154.

Y. Ju, G. Sun, Q. Chen, M. Zhang, H. Zhu, and M. U. Rehman, “A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting,” IEEE Access, vol. 7, pp. 28309–28318, 2019, doi: 10.1109/ACCESS.2019.2901920.

L. Ni, Y. Li, X. Wang, J. Zhang, J. Yu, and C. Qi, “Forecasting of Forex Time Series Data Based on Deep Learning,” Procedia Comput. Sci., vol. 147, pp. 647–652, 2019, doi: 10.1016/j.procs.2019.01.189.

S. Malek, F. Melgani, and Y. Bazi, “One-dimensional convolutional neural networks for spectroscopic signal regression,” J. Chemom., vol. 32, no. 5, pp. 1–17, 2018, doi: 10.1002/cem.2977.

W. Ng et al., “Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra,” Geoderma, vol. 352, no. January, pp. 251–267, 2019, doi: 10.1016/j.geoderma.2019.06.016.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications: A survey,” Mech. Syst. Signal Process., vol. 151, p. 107398, 2021, doi: 10.1016/j.ymssp.2020.107398.

R. B. Arif, M. A. B. Siddique, M. M. R. Khan, and M. R. Oishe, “Study and observation of the variations of accuracies for handwritten digits recognition with various hidden layers and epochs using convolutional neural network,” 4th Int. Conf. Electr. Eng. Inf. Commun. Technol. iCEEiCT 2018, pp. 112–117, 2018, doi: 10.1109/CEEICT.2018.8628078.

S. Yi, J. Ju, M.-K. Yoon, and J. Choi, “Grouped Convolutional Neural Networks for Multivariate Time Series,” Mar. 2017, [Online]. Available: http://arxiv.org/abs/1703.09938.

M. A. Syarifudin et al., “Hotspot Prediction Using 1D Convolutional Neural Network,” Procedia Comput. Sci., vol. 179, no. 2019, pp. 845–853, 2021, doi: 10.1016/j.procs.2021.01.073.

P. Sharma, S. Chandan, and B. P. Agrawal, “Vibration Signal-based Diagnosis of Defect Embedded in Outer Race of Ball Bearing using 1-D CNN,” 2020 Int. Conf. Comput. Perform. Eval. ComPE 2020, no. July, pp. 531–536, 2020, doi: 10.1109/ComPE49325.2020.9199994.

A. Mulyadi and E. C. Djamal, “Sunshine Duration Prediction Using 1D Convolutional Neural Networks,” Proc. 2019 6th Int. Conf. Instrumentation, Control. Autom. ICA 2019, no. August, pp. 77–81, 2019, doi: 10.1109/ICA.2019.8916751.

E. Hoseinzade and S. Haratizadeh, “CNNpred: CNN-based stock market prediction using a diverse set of variables,” Expert Syst. Appl., vol. 129, pp. 273–285, 2019, doi: 10.1016/j.eswa.2019.03.029.

M. I. Khan and R. Maity, “Hybrid Deep Learning Approach for Multi-Step-Ahead Daily Rainfall Prediction Using GCM Simulations,” IEEE Access, vol. 8, pp. 52774–52784, 2020, doi: 10.1109/ACCESS.2020.2980977.

A. Parashar and A. Sonker, “Application of hyperparameter optimized deep learning neural network for classification of air quality data,” Int. J. Sci. Technol. Res., vol. 8, no. 11, pp. 1435–1443, 2019.

Y. Li, Z. Zhu, D. Kong, H. Han, and Y. Zhao, “EA-LSTM: Evolutionary attention-based LSTM for time series prediction,” Knowledge-Based Syst., vol. 181, p. 104785, Oct. 2019, doi: 10.1016/j.knosys.2019.05.028.

M. Tovar, M. Robles, and F. Rashid, “PV power prediction, using CNN-LSTM hybrid neural network model. Case of study: Temixco-Morelos, México,” Energies, vol. 13, no. 24, pp. 1–15, Dec. 2020, doi: 10.3390/en13246512.

A. Jadidi, R. Menezes, N. De Souza, and A. C. De Castro Lima, “A Hybrid GA–MLPNN Model for One-Hour-Ahead Forecasting of the Global Horizontal Irradiance in Elizabeth City, North Carolina,” Energies, vol. 11, no. 10, pp. 1–18, Oct. 2018, doi: 10.3390/en11102641.

X. Qiu, L. Zhang, P. Nagaratnam Suganthan, and G. A. J. Amaratunga, “Oblique Random Forest Ensemble via Least Square Estimation for Time Series Forecasting,” Inf. Sci. (Ny)., vol. 420, pp. 249–262, 2017, doi: 10.1016/j.ins.2017.08.060.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

International Journal Of Artificial Intelligence Research

Organized by: Departemen Teknik Informatika STMIK Dharma Wacana
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung

Email: jurnal.ijair@gmail.com

View IJAIR Statcounter

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.