Face Recognition Using Machine Learning Algorithm Based on Raspberry Pi 4b

(1) Sunardi Sunardi Mail (Universitas Ahmad Dahlan, Indonesia)
(2) Abdul Fadlil Mail (Universitas Ahmad Dahlan, Indonesia)
(3) * Denis Prayogi Mail (Universitas Ahmad Dahlan STMIK PPKIA Tarakanita Rahmawati, Indonesia)
*corresponding author

Abstract


Machine learning is one of artificial intelligence that is used to solve various problems, one of which is classification. Classification can separate a set of objects based on certain characteristics. This study discusses the classification of objects in the form of facial images with the aim of the system being able to recognize a person's face to access a room for security reasons. The application of machine learning using the support vector machine algorithm with the support vector classifier technique is implemented on a raspberry pi-based security device.  The results of training using this algorithm produce a model with 99% accuracy in 0.10 seconds based on testing data of 525 face images. The model evaluation got 99% precision, 99% recall, and 99% f1-score. Testing the model made from the training process using the raspberry pi model 4b is can recognize facial images in real-time.  If the security device detects someone at the door and then recognizes the face image then room access will be granted and an alarm is activated indicating the door is open.

Keywords


Machine Learning; Support Vector Machine; Face Recognition; Raspberry Pi; Scikit-learn

   

DOI

https://doi.org/10.29099/ijair.v7i1.321
      

Article metrics

10.29099/ijair.v7i1.321 Abstract views : 151 | PDF views : 98

   

Cite

   

Full Text

Download

References


A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review Paper,” Indones. J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2019.

S. Yulina, “Penerapan Haar Cascade Classifier dalam Mendeteksi Wajah dan Transformasi Citra Grayscale Menggunakan OpenCV,” J. Politek. Caltex Riau, vol. 7, no. 1, pp. 100–109, 2021.

V. D. Win, “Pengenalan Wajah Menggunakan Convolutional Neural Network,” Institut Teknologi Sepuluh Nopember, 2018.

S. Subiyanto, D. Priliyana, M. E. Riyadani, N. Iksan, and H. Wibawanto, “Sistem Pengenalan Wajah dengan Algoritme PCA-GA untuk Keamanan Pintu Rumah Pintar Menggunakan Rasberry Pi,” J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 210–216, 2020, doi: 10.14710/jtsiskom.2020.13590.

H. Zhi and S. Liu, “Face Recognition Based on Genetic Algorithm,” J. Vis. Commun. Image Represent., vol. 58, pp. 495–502, 2019, doi: 10.1016/j.jvcir.2018.12.012.

A. Nurhopipah and A. Harjoko, “Motion Detection and Face Recognition for CCTV Surveillance System,” Indones. J. Comput. Cybern. Syst., vol. 12, no. 2, pp. 107–118, 2018, doi: 10.22146/ijccs.18198.

E. P. Purwandari, A. Erlansari, A. Wijanarko, and E. A. Adrian, “Pengenalan Sketsa Wajah Menggunakan Principal Component Analysis sebagai Aplikasi Forensik,” J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 178–184, 2020, doi: 10.14710/jtsiskom.2020.13422.

S. Al-Aidid and D. S. Pamungkas, “Sistem Pengenalan Wajah dengan Algoritma Haar Cascade dan Local Binary Pattern Histogram,” J. Rekayasa Elektr., vol. 14, no. 1, pp. 62–67, 2018, doi: 10.17529/jre.v14i1.9799.

I. D. Wijaya, N. Usman, and M. A. Barata, “Implementasi Raspberry Pi untuk Rancang Bangun Sistem Keamanan Pintu Ruangan Server dengan Pengenalan Wajah Menggunakan Metode Triangle Face,” J. Inform. Polinema, vol. 4, no. 1, pp. 9–15, 2017.

S. Abidin, “Deteksi Wajah Menggunakan Metode Haar Cascade Classifier Berbasis Webcam pada Matlab,” J. Teknol. Elekterika, vol. 15, no. 1, pp. 21–27, 2018, doi: 10.31963/elekterika.v15i1.2102.

R. Purwati and G. Ariyanto, “Pengenalan Wajah Manusia Berbasis Algoritma Local Binary Pattern,” Emit. J. Tek. Elektro, vol. 17, no. 2, pp. 29–38, 2017, doi: 10.23917/emitor.v17i2.6232.

Fahrizal, F. O. Reynaldi, and N. Hikmah, “Implementasi Machine Learning pada Sistem PETS Identification Menggunakan Python Berbasis Ubuntu,” J. Inf. Syst. Informatics Comput., vol. 4, no. 1, pp. 86–91, 2020.

I. I. Setiawan, A. Jaenul, and D. Priyokusumo, “Prototipe Sistem Keamanan Rumah Menggunakan Face Recognition Berbasis Raspberry Pi 4,” SNITT- Politek. Negeri Balikpapan 2020, pp. 496–501, 2020.

R. R. Pratama, “Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia,” J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 2, pp. 302–311, 2020, doi: 10.30812/matrik.v19i2.688.

J. W. G. Putra, “Pengenalan Konsep Pembelajaran Mesin dan Deep Learning,” in Pengenalan Konsep Pembelajaran Mesin dan Deep Learning, 1.4., Tokyo, 2020, pp. 1–235.

R. Santoso, Ramadhandi Resky Megasari and Y. A. Hambali, “Implementasi Metode Machine Learning Menggunakan Algoritma Evolving Artificial Neural Network pada Kasus Prediksi Diagnosis Diabetes,” J. Apl. dan Teor. Ilmu Komput., vol. 3, no. 2, 2020, [Online]. Available: https://ejournal.upi.edu/index.php/JATIKOM/article/view/27885.

I. M. Parapat, M. T. Furqon, and Sutrisno, “Penerapan Metode Support Vector Machine (SVM) pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3163–3169, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2577.

M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 6308–6325, 2020, doi: 10.1109/JSTARS.2020.3026724.

S. Prangga, “Optimasi Parameter pada Support Vector Machine Menggunakan Pendekatan Metode Taguchi untuk Data High-Dimensional,” Institut Teknologi Sepuluh November, 2017.

T. Y. Hadiwandra and F. Candra, “High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm,” IT J. Res. Dev., vol. 6, no. 1, pp. 43–51, 2021, [Online]. Available: https://journal.uir.ac.id/index.php/ITJRD/article/view/5806.

Friendly, Z. Sembiring, and H. R. Safitri, “Deteksi Wajah Bermasker Berbasis Tensorflow-Keras untuk Pengendalian Gerbang Akses Masuk Menggunakan Rasberry Pi4,” Jikstra, vol. 02, no. 02, pp. 45–55, 2020.

R. Suwartika and G. Sembada, “Perancangan Sistem Keamanan Menggunakan Solenoid Door Lock Berbasis Arduino Uno pada Pintu Laboratorium di PT. XYZ,” J. E-Komtek, vol. 4, no. 1, pp. 62–74, 2020, doi: 10.37339/e-komtek.v4i1.217.

R. Toyib, I. Bustami, D. Abdullah, and O. Onsardi, “Penggunaan Sensor Passive Infrared Receiver (PIR) untuk Mendeteksi Gerak Berbasis Short Message Service Gateway,” J. Pseudocode, vol. 6, no. 2, pp. 114–124, 2019, doi: 10.33369/pseudocode.6.2.114-124.

Siswanto, G. P. Utama, and W. Gata, “Pengamanan Ruangan dengan Dfrduino Uno R3, Sensor Mc-38, Pir, Notifikasi Sms, Twitter,” J. Resti (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 697–707, 2018, doi: 10.29207/resti.v2i3.592.

A. Yudhana, S. Sunardi, and P. Priyatno, “Perancangan Pengaman Pintu Rumah Berbasis Sidik Jari Menggunakan Metode UML,” J. Teknol., vol. 10, no. 2, pp. 131–138, 2018.

A. B. Satriya and S. Agustini, “Face Recognition using Modified Triangle Method,” Integer J., vol. 2, no. 1, pp. 1–9, 2017.

D. Devito, R. C. Wihandika, and A. W. Widodo, “Ekstraksi Ciri untuk Klasifikasi Gender Berbasis Citra Wajah Menggunakan Metode Histogram of Oriented Gradients,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 8, pp. 8002–8011, 2019.

W. Fitriani, M. Zidny Naf’an, and E. Usada, “Ekstraksi Fitur pada Citra Tanda Tangan sebagai Ciri Identitias Pemiliknya Menggunakan Discrete Fourier Transform,” in Prosiding Sendi_u, 2018, pp. 978–979.

H. Ai and X. Cheng, “Research on Embedded Access Control Security System and Face Recognition System,” Meas. J. Int. Meas. Confed., vol. 123, no. April, pp. 309–322, 2018, doi: 10.1016/j.measurement.2018.04.005.

N. Kustian, “Analisis Komponen Utama Menggunakan Metode Eigenface Terhadap Pengenalan Citra Wajah,” J. Teknol., vol. 9, no. 1, p. 43, 2017, doi: 10.24853/jurtek.9.1.43-48.

R. Armandhani, R. C. Wihandika, and M. A. Rahman, “Klasifikasi Gender Berbasis Wajah Menggunakan Metode Local Binary Pattern dan Random KNN,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 8, pp. 7575–7582, 2019.

R. Munarto and A. Darma, “Klasifikasi Gender dan Usia Berdasarkan Citra Wajah Manusia Menggunakan Convolutional Neural Network,” Setrum Sist. Kendali Tenaga Elektron. Telekomun. Komput., vol. 10, no. 2, pp. 30–43, 2021, doi: 10.36055/setrum.v10i2.12991.

C. Kurniawan and H. Irsyad, “Perbandingan Metode K-Nearest Neighbor Dan Naïve Bayes untuk Klasifikasi Gender Berdasarkan Mata,” J. Algoritm., vol. 2, no. 2, pp. 82–91, 2022.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

International Journal Of Artificial Intelligence Research

Organized by: Departemen Teknik Informatika STMIK Dharma Wacana
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
phone. +62725-7850671
Fax. +62725-7850671
Email: jurnal.ijair@gmail.com | herinurdiyanto@dharmawacana.ac.id

View IJAIR Statcounter

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.