Development of PCB Defect Detection System Using Image Processing With YOLO CNN Method

(1) * Agus Dwi Santoso Mail (Politeknik Pelayaran Surabaya, Indonesia)
(2) Ferry Budi Cahyono Mail (Politeknik Pelayaran Surabaya, Indonesia)
(3) Brendi Prahasta Mail (Politeknik Perkapalan Negeri Surabaya, Indonesia)
(4) Imam Sutrisno Mail (Politeknik Perkapalan Negeri Surabaya, Indonesia)
(5) Agus Khumaidi Mail (Politeknik Perkapalan Negeri Surabaya, Indonesia)
*corresponding author

Abstract


Inside the equipment there are many electronic components such as resistors, transistors, capacitors and so on. When used in the production of electronic equipment, PCBs are very influential in the manufacture of these electronic devices, for example, when there are only a few broken or damaged PCB paths, the electronic device cannot be operated properly. So it is very important in the PCB Quality Check process to check whether there is damage to the PCB or not. Usually in PCB inspection only direct checking is used in the conventional way. Therefore, in this study, the author tries to create and analyze a PCB flaw checking tool with the help of a camera that has a high revolution to replace human vision to make it easier and save costs. The application of this PCB checking tool uses a technology called a laptop and a camera. With these two technologies, Image Processing can be used to detect objects using the OpenCv and Tensorflow libraries. PCB flaw detection tool with the help of Image Processing with the YOLO Convolutional Neural Network method to help determine broken paths and drill holes on the PCB

Keywords


YOLO CNN, image processing, PCB

   

DOI

https://doi.org/10.29099/ijair.v6i1.343
      

Article metrics

10.29099/ijair.v6i1.343 Abstract views : 920 | PDF views : 204

   

Cite

   

Full Text

Download

References


Pradhana, A., Prayudi, Y. (2008). Penggunaan Templete Matching Untuk Identifikasi Kecacatan pada PCB, Seminar Nasional Aplikasi Teknologi Informasi 2008 (SNATI 2008) ISSN: 1907-5022 Yogyakarta, 21 Juni 2008

Nurmala, H., (2020). RANCANG BANGUN DETEKSI KECACATAN PCB (PRINTED CIRCUIT BOARD) BERBASIS PENGOLAHAN CITRA. Kelistrikan Kapal POLITEKNIK PERKAPALAN NEGERI SURABAYA, Agustus, Diploma thesis, Politeknik Perkapalan Negeri Surabaya.

AD Wiratmoko, AW Syauqi, MS Handika, DB Nurrizki, M Wafi, M Syai’in, I Sutrisno, MK Hasin, I Munadhif, AZ Arfianto, AWB Santosa, VYP Ardhana, (2019). Design of Potholes Detection as Road’s Feasibility Data Information Using Convolutional Neural Network (CNN), International Symposium on Electronics and Smart Devices (ISESD), Bali, Indonesia

MA Jami’in, I Sutrisno, J Hu, (2015). The State-Dynamic-Error-Based Switching Control under Quasi-ARX Neural Network Model, in Proc. of the20 th International Symposium on Artificial Life and Robotics (AROB 20 th 2015), Japan

I Sutrisno, MA Jami’in, J Hu, MH Marhaban, N Mariun, (2014). Nonlinear Model-Predictive Control Based on Quasi-ARX Radial-Basis Function-Neural-Network, 8th Inter. Conference on Mathematical Modelling and Computer Simulation (AMS2014), Taipei




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

International Journal Of Artificial Intelligence Research

Organized by: Departemen Teknik Informatika STMIK Dharma Wacana
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung

Email: jurnal.ijair@gmail.com

View IJAIR Statcounter

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.