An extraction of shapes and support vector machine methods for identification of decorative wall “Lamin” motifs of the Dayak Kenyah Pampang tribe

(1) * Haviluddin Haviluddin Mail (Scopus ID: 56596793000; Departement Ilmu Komputer; Universitas Mulawarman, Indonesia)
(2) Masna Wati Mail (Universitas Mulawarman, Indonesia)
(3) Rayner Alfred Mail (Universiti Malaysia Sabah, Malaysia)
(4) Aji Ery Burhandenny Mail (Universitas Mulawarman, Indonesia)
(5) Arief Ardi Pratama Mail (Universitas Mulawarman, Indonesia)
*corresponding author


One of the Dayak cultures of Kalimantan Island, Indonesia is a traditional house called Lamin where each wall is decorated according to tribal characteristics. This study aims to identify the image on the Lamin wall using the Support Vector Machine (SVM) method based on the eccentricity and metric parameter values. The data of this study consisted of 50 types of images of the Lamin wall motifs of the Dayak Kenyah tribe consisting of tebengaang, dragon, crocodile, tiger, and arch which were taken from the tourist village, Pampang, Samarinda, East Kalimantan. Based on the experiment, the shape feature extraction method has produced the highest value of the eccentricity parameter which is 0.6979 and the metric parameter is 0.9953 on the image of the arch. Motif identification using the SVM method using linear, Gaussian/RBF, and polynomial kernel parameters has resulted in the highest accuracy with 80% image composition of kernel polynomial at 85%, Gaussian/RBF at 80%, and linear at 78%.


Image identification; Wall motifs; Dayak Kenyah; Shape-feature extraction; SVM



Article metrics

10.29099/ijair.v7i1.475 Abstract views : 147





T. A. Kusumaningrum, Jelajah arsitektur lamin suku dayak kenyah. 2018.

R. Ardianto, T. Rivanie, Y. Alkhalifi, F. S. Nugraha, and W. Gata, “Sentiment Analysis on E-Sports for Education Curriculum Using Naive Bayes and Support Vector Machine,” J. Ilmu Komput. dan Inf., vol. 13, no. 2, pp. 109–122, 2020, doi: 10.21609/jiki.v13i2.885.

A. Ahmed and S. E. Hussein, “Leaf identification using radial basis function neural networks and SSA based support vector machine,” PLoS One, vol. 15, no. 8 August, pp. 1–18, 2020, doi: 10.1371/journal.pone.0237645.

H. J. Chiu, T. H. S. Li, and P. H. Kuo, “Breast cancer–detection system using PCA, multilayer perceptron, transfer learning, and support vector machine,” IEEE Access, vol. 8, pp. 204309–204324, 2020, doi: 10.1109/ACCESS.2020.3036912.

M. Van, D. T. Hoang, and H. J. Kang, “Bearing fault diagnosis using a particle swarm optimization-least squares wavelet support vector machine classifier,” Sensors (Switzerland), vol. 20, no. 12, pp. 1–19, 2020, doi: 10.3390/s20123422.

J. H. Jaman, A. N. Bait, A. Suharso, Garno, A. S. Y. Irawan, and I. P. Dewi, “Classification of rice image varieties in Karawang city using support vector machine algorithm,” J. Theor. Appl. Inf. Technol., vol. 98, no. 21, pp. 3379–3381, 2020.

K. X. Han, W. Chien, C. C. Chiu, and Y. T. Cheng, “Application of support vector machine (SVM) in the sentiment analysis of twitter dataset,” Appl. Sci., vol. 10, no. 3, 2020, doi: 10.3390/app10031125.

H. S. Pakpahan, H. Haviluddin, D. I. Nurpadillah, I. Islamiyah, H. J. Setyadi, and P. P. Widagdo, “A Sundanese Characters Recognition Based on Backpropagation Neural Network Approach,” in 2019 International Conference on Electrical, Electronics and Information Engineering, ICEEIE 2019, 2019, pp. 250–254, doi: 10.1109/ICEEIE47180.2019.8981469.

B. Vijayalaxmi, C. Anuradha, K. Sekaran, M. N. Meqdad, and S. Kadry, “Image processing based eye detection methods a theoretical review,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 3. pp. 1189–1197, 2020, doi: 10.11591/eei.v9i3.1783.

A. Vyas, S. Yu, and J. Paik, “Fundamentals of digital image processing,” in Signals and Communication Technology, 2018.

D. Oliva, M. Abd Elaziz, and S. Hinojosa, “Image Processing,” in Studies in Computational Intelligence, 2019.

V. Wiley and T. Lucas, “Computer vision and image processing: a paper review,” Int. J. Artif. Intell. Res., vol. 2, no. 1, pp. 29–36, 2018, doi: 10.29099/ijair.v2i1.42.

Y. X. Chu, X. G. Liu, and C. H. Gao, “Multiscale models on time series of silicon content in blast furnace hot metal based on Hilbert-Huang transform,” Proc. 2011 Chinese Control Decis. Conf. CCDC 2011, pp. 842–847, 2011, doi: 10.1109/CCDC.2011.5968300.

J. O’Rourke and G. T. Toussaint, “Pattern recognition,” in Handbook of Discrete and Computational Geometry, Third Edition, 2017.

H. Haviluddin, R. Alfred, N. Moham, H. S. Pakpahan, I. Islamiyah, and H. J. Setyadi, “Handwriting Character Recognition using Vector Quantization Technique,” Knowl. Eng. Data Sci., 2019, doi: 10.17977/um018v2i22019p82-89.

R. Alfred, J. H. Obit, C. C. P. Yee, H. Haviluddin, and Y. Lim, “Towards Paddy Rice Smart Farming: A Review on Big Data, Machine Learning and Rice Production Tasks,” IEEE Access, vol. 9, no. 3, pp. 50358–50380, 2021, doi: 10.1109/ACCESS.2021.3069449.

M. Wati, H. S. Pakpahan, A. Prafanto, F. Akbar, Haviluddin, and A. W. D. Boernama, “Application of C4.5 Classification Algorithm for Chronic Kidney Disease Diagnosis,” in 2019 International Conference on Electrical, Electronics and Information Engineering, ICEEIE 2019, 2019, pp. 314–319, doi: 10.1109/ICEEIE47180.2019.8981458.

H. Bhavsar and M. H. Panchal, “A Review on Support Vector Machine for Data Classification,” Int. J. Adv. Res. Comput. Eng. Technol., vol. 1, no. 10, pp. 185–189, 2012.

A. Han, X. Chen, Z. Li, K. Alsubhi, and A. Yunianta, “Advanced learning-based energy policy and management of dispatchable units in smart grids considering uncertainty effects,” Int. J. Electr. Power Energy Syst., vol. 132, 2021, doi: 10.1016/j.ijepes.2021.107188.

P. W. Wang and C. J. Lin, “Support vector machines,” in Data Classification: Algorithms and Applications, 2014.

I. Gunawan, Haviluddin, T. Widyaningtyas, Darusalam, A. P. Wibawa, and A. Pranolo, “The Performance of Correlation-Based Support Vector Machine in Illiteracy Dataset,” in 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT), 2018, pp. 96–99.

I. Wirasati, Z. Rustam, J. E. Aurelia, S. Hartini, and G. S. Saragih, “Comparison some of kernel functions with support vector machines classifier for thalassemia dataset,” IAES International Journal of Artificial Intelligence, vol. 10, no. 2. pp. 430–437, 2021, doi: 10.11591/IJAI.V10.I2.PP430-437.

L. K. Ramasamy, S. Kadry, and S. Lim, “Selection of optimal hyper-parameter values of support vector machine for sentiment analysis tasks using nature-inspired optimization methods,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 1. pp. 290–298, 2021, doi: 10.11591/eei.v10i1.2098.

Mislan, Haviluddin, R. Alfred, and A. F. O. Gaffar, “ A Performance Neighborhood Distance ( ndist ) Between K -Means and SOM Algorithms ,” Adv. Sci. Lett., 2018, doi: 10.1166/asl.2018.10721.

H. Haviluddin, E. Budiman, and N. Amin, “A Model of Non-ASN Employee Performance Assessment Based on the ROC and MOORA Methods,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 6, no. 2, pp. 315–321, 2022, doi: 10.29207/resti.v6i2.3961.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


International Journal Of Artificial Intelligence Research

Organized by: Departemen Teknik Informatika STMIK Dharma Wacana
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung


View IJAIR Statcounter

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.