Expert System for Diagnosis of Lung Disease from X-Ray Using CNN and SVM

(1) Zulkifli Zulkifli Mail (Aisyah University, Indonesia)
(2) Retno Ariza Soeprihatini Mail (Lampung University, Indonesia)
(3) Sfenrianto Sfenrianto Mail (Binus University, Indonesia, Indonesia)
(4) Zulvi Wiyanti Mail (Prima Nusantara Bukittinggi University, Indonesia)
(5) * Panji Bintoro Mail (Aisyah University, Indonesia)
(6) Fitriana Fitriana Mail (Aisyah University, Indonesia)
(7) Sukarni Sukarni Mail (Aisyah University, Indonesia, Indonesia)
(8) Nopi Anggista Putri Mail (Aisyah University, Indonesia)
(9) Dwi Yana Ayu Andini Mail (Aisyah University, Indonesia)
*corresponding author

Abstract


The lung disease diagnosis expert system utilizes human knowledge to diagnose various conditions affecting the lung. Diseases caused by fungal or bacterial infection in the organ can cause inflammation as well as death when it is not detected on time. A standard method to diagnose these conditions is the use of a chest X-ray (CXR), which requires careful examination of the image by an expert. In this study, several CNN and SVM architectural models were proposed to classify CXR images to diagnose whether a person has COVID-19, Viral Pneumonia, Bacterial Pneumonia, Tuberculosis (TB), and Normal. The experiment showed that InceptionV3 had the best results compared to other CNN architectures and SVM. Classification accuracy, precision, recall, and f1-score of CXR images for COVID-19, Viral Pneumonia, Bacterial Pneumonia, TB, and Normal were 0.86, 0.91, 0.91, and 0.91, respectively. This study was based on a deep learning system with different CNN and SVM architectures that can work well on the CXR images dataset for diagnosing lung disease.

Keywords


Expert System; Lung Disease Diagnosis; Convolutional Neural Network; Support Vector Machine

   

DOI

https://doi.org/10.29099/ijair.v7i1.870
      

Article metrics

10.29099/ijair.v7i1.870 Abstract views : 443 | PDF views : 54

   

Cite

   

Full Text

Download

References


B. Y. Elhabil and S. S. Abu-Naser, “An Expert System for Ankle Problems,†Int. J. Eng. Inf. Syst., vol. 5, no. 4, pp. 57–66, 2021, [Online]. Available: https://philpapers.org/rec/YELAES

A. A. Mohammed, K. Ambak, A. M. Mosa, and D. Syamsunur, “Expert system in engineering transportation: A review,†J. Eng. Sci. Technol., vol. 14, no. 1, pp. 229–252, 2019.

S. Safiri et al., “Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: Results from the Global Burden of Disease Study 2019,†BMJ, 2022, doi: 10.1136/bmj-2021-069679.

F. Hussein et al., “Hybrid CLAHE-CNN Deep Neural Networks for Classifying Lung Diseases from X-ray Acquisitions,†Electronics, vol. 11, no. 19, p. 3075, 2022, doi: 10.3390/electronics11193075.

A. M. Ismael and A. Şengür, “Deep learning approaches for COVID-19 detection based on chest X-ray images,†Expert Syst. Appl., vol. 164, no. March 2020, 2021, doi: 10.1016/j.eswa.2020.114054.

M. Z. Alom, M. M. S. Rahman, M. S. Nasrin, T. M. Taha, and V. K. Asari, “COVID_MTNet: COVID-19 Detection with Multi-Task Deep Learning Approaches,†2020, [Online]. Available: http://arxiv.org/abs/2004.03747

M. Y. Kamil, “A deep learning framework to detect Covid-19 disease via chest X-ray and CT scan images,†Int. J. Electr. Comput. Eng., vol. 11, no. 1, pp. 844–850, 2021, doi: 10.11591/ijece.v11i1.pp844-850.

B. Giri, S. Pandey, R. Shrestha, K. Pokharel, F. S. Ligler, and B. B. Neupane, “Review of analytical performance of COVID-19 detection methods,†Anal. Bioanal. Chem., vol. 413, no. 1, pp. 35–48, 2021, doi: 10.1007/s00216-020-02889-x.

World Health Organization, “Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases,†vol. 2019, no. March, 2020.

R. Yi, L. Tang, Y. Tian, J. Liu, and Z. Wu, “Identification and classification of pneumonia disease using a deep learning-based intelligent computational framework,†Neural Comput. Appl., vol. 7, 2021, doi: 10.1007/s00521-021-06102-7.

I. S. Masad, A. Alqudah, A. M. Alqudah, and S. Almashaqbeh, “A hybrid deep learning approach towards building an intelligent system for pneumonia detection in chest x-ray images,†Int. J. Electr. Comput. Eng., vol. 11, no. 6, pp. 5530–5540, 2021, doi: 10.11591/ijece.v11i6.pp5530-5540.

S. M. Fati, E. M. Senan, and N. ElHakim, “Deep and Hybrid Learning Technique for Early Detection of Tuberculosis Based on X-ray Images Using Feature Fusion,†Appl. Sci., vol. 12, no. 14, p. 7092, 2022, doi: 10.3390/app12147092.

H. Roopa and T. Asha, “Feature extraction of chest X-ray images and analysis using PCA and kPCA,†Int. J. Electr. Comput. Eng., vol. 8, no. 5, pp. 3392–3398, 2018, doi: 10.11591/ijece.v8i5.pp3392-3398.

E. Ayan and H. M. Ünver, “Diagnosis of pneumonia from chest X-ray images using deep learning,†2019 Sci. Meet. Electr. Biomed. Eng. Comput. Sci. EBBT 2019, pp. 2–6, 2019, doi: 10.1109/EBBT.2019.8741582.

L. N. Mahdy, A. I. B. El Seddawy, and K. A. Ezzat, “Automatic COVID-19 lung images classification system based on convolution neural network,†Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 5573–5579, 2022, doi: 10.11591/ijece.v12i5.pp5573-5579.

M. Hong, B. Rim, H. C. Lee, H. U. Jang, J. Oh, and S. Choi, “Multiâ€class classification of lung diseases using cnn models,†Appl. Sci., vol. 11, no. 19, pp. 1–17, 2021, doi: 10.3390/app11199289.

E. Kesim, Z. Dokur, and T. Olmez, “X-ray chest image classification by a small-sized convolutional neural network,†2019 Sci. Meet. Electr. Biomed. Eng. Comput. Sci. EBBT 2019, pp. 5–9, 2019, doi: 10.1109/EBBT.2019.8742050.

M. J. Horry et al., “COVID-19 Detection through Transfer Learning Using Multimodal Imaging Data,†IEEE Access, vol. 8, pp. 149808–149824, 2020, doi: 10.1109/ACCESS.2020.3016780.

F. Demir, A. Sengur, and V. Bajaj, “Convolutional neural networks based efficient approach for classification of lung diseases,†Heal. Inf. Sci. Syst., vol. 8, no. 1, pp. 1–8, 2020, doi: 10.1007/s13755-019-0091-3.

N. Y. Lee et al., “A case of COVID-19 and pneumonia returning from Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic,†J. Microbiol. Immunol. Infect., vol. 53, no. 3, pp. 485–487, 2020, doi: 10.1016/j.jmii.2020.03.003.

M. Masud, A. E. Eldin Rashed, and M. S. Hossain, “Convolutional neural network-based models for diagnosis of breast cancer,†Neural Comput. Appl., vol. 34, no. 14, pp. 11383–11394, 2022, doi: 10.1007/s00521-020-05394-5.

D. A. Ragab, M. Sharkas, S. Marshall, and J. Ren, “Breast cancer detection using deep convolutional neural networks and support vector machines,†PeerJ, vol. 2019, no. 1, pp. 1–23, 2019, doi: 10.7717/peerj.6201.

S. Kumar, A. Negi, J. N. Singh, and A. Gaurav, “Brain Tumor Segmentation and Classification Using MRI Images via Fully Convolution Neural Networks,†Proc. - IEEE 2018 Int. Conf. Adv. Comput. Commun. Control Networking, ICACCCN 2018, pp. 1178–1181, 2018, doi: 10.1109/ICACCCN.2018.8748614.

Y. Xie et al., “Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives,†Diagnostics, vol. 12, no. 8, 2022, doi: 10.3390/diagnostics12081850.

B. Ahmad, M. Usama, C. M. Huang, K. Hwang, M. S. Hossain, and G. Muhammad, “Discriminative Feature Learning for Skin Disease Classification Using Deep Convolutional Neural Network,†IEEE Access, vol. 8, pp. 39025–39033, 2020, doi: 10.1109/ACCESS.2020.2975198.

T. H. H. Aldhyani, A. Verma, M. H. Al-Adhaileh, and D. Koundal, “Multi-Class Skin Lesion Classification Using a Lightweight Dynamic Kernel Deep-Learning-Based Convolutional Neural Network,†Diagnostics, vol. 12, no. 9, 2022, doi: 10.3390/diagnostics12092048.

H. Sharma, J. S. Jain, P. Bansal, and S. Gupta, “Feature extraction and classification of chest X-ray images using CNN to detect pneumonia,†Proc. Conflu. 2020 - 10th Int. Conf. Cloud Comput. Data Sci. Eng., pp. 227–231, 2020, doi: 10.1109/Confluence47617.2020.9057809.

A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and P. R. Pinheiro, “CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection,†IEEE Access, vol. 8, pp. 91916–91923, 2020, doi: 10.1109/ACCESS.2020.2994762.

A. Irfan, A. L. Adivishnu, A. Sze-To, T. Dehkharghanian, S. Rahnamayan, and H. R. Tizhoosh, “Classifying Pneumonia among Chest X-Rays Using Transfer Learning,†Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2020-July, pp. 2186–2189, 2020, doi: 10.1109/EMBC44109.2020.9175594.

Annisa Fitria Nurjannah, Andi Shafira Dyah Kurniasari, Zamah Sari, and Yufis Azhar, “Pneumonia Image Classification Using CNN with Max Pooling and Average Pooling,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 2, pp. 330–338, 2022, doi: 10.29207/resti.v6i2.4001.

Jalu Nusantoro, Faldo Fajri Afrinanto, Wana Salam Labibah, Zamah Sari, and Yufis Azhar, “Detection of Covid-19 on X-Ray Image of Human Chest Using CNN and Transfer Learning,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 3, pp. 430–441, 2022, doi: 10.29207/resti.v6i3.4118.

A. Fadli, Y. Ramadhani, and M. S. Aliim, “Purwarupa Sistem Deteksi COVID-19 Berbasis Website Menggunakan Algoritma CNN,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 876–883, 2021.

F. A. Khan et al., “Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease,†Lancet Digit. Heal., vol. 2, no. 11, pp. e573–e581, 2020, doi: 10.1016/S2589-7500(20)30221-1.

T. Rahman, M. E. H. Chowdhury, and A. Khandakar, “applied sciences Transfer Learning with Deep Convolutional Neural Network ( CNN ) for Pneumonia Detection Using,†MDPI, J. app Sci., vol. 3233, pp. 1–17, 2020.

W. Tan et al., “Classification of COVID-19 pneumonia from chest CT images based on reconstructed super-resolution images and VGG neural network,†Heal. Inf. Sci. Syst., vol. 9, no. 1, pp. 1–12, 2021, doi: 10.1007/s13755-021-00140-0.

B. Mandal, A. Okeukwu, and Y. Theis, “Masked Face Recognition using ResNet-50,†2021, [Online]. Available: http://arxiv.org/abs/2104.08997

M. Mujahid, F. Rustam, R. Ãlvarez, J. Luis Vidal Mazón, I. de la T. Díez, and I. Ashraf, “Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network,†Diagnostics, vol. 12, no. 5, pp. 1–16, 2022, doi: 10.3390/diagnostics12051280.

A. K. Jean, M. Diarra, B. A. Bakary, G. Pierre, A. K. Jérôme, and U. B. Franche-comté, “Application based on Hybrid CNN-SVM and PCA- SVM Approaches for Classification of Cocoa Beans,†vol. 13, no. 9, pp. 231–238, 2022.

M. Usman, S. Ahmed, J. Ferzund, A. Mehmood, and A. Rehman, “Using PCA and Factor Analysis for Dimensionality Reduction of Bio-informatics Data,†Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 5, pp. 415–426, 2017, doi: 10.14569/ijacsa.2017.080551.

M. Turkoglu, “COVIDetectioNet: COVID-19 diagnosis system based on X-ray images using features selected from pre-learned deep features ensemble,†Appl. Intell., vol. 51, no. 3, pp. 1213–1226, 2021, doi: 10.1007/s10489-020-01888-w.

M. M. Abubakar, B. Z. Adamu, and M. Z. Abubakar, “Pneumonia Classification Using Hybrid CNN Architecture,†2021 Int. Conf. Data Anal. Bus. Ind. ICDABI 2021, pp. 520–522, 2021, doi: 10.1109/ICDABI53623.2021.9655918.

Ž. Vujović, “Classification Model Evaluation Metrics,†Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 6, pp. 599–606, 2021, doi: 10.14569/IJACSA.2021.0120670.

E. Nadeak, F. T. Devani, Malahayati, and Sulistiyanto, “Perception of Privacy Concerns in Using Instagram Among Students (Case Study: Sriwijaya State Polytechnic),” in 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2023, pp. 273–277, doi: 10.1109/EECSI59885.2023.10295759.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

The International Journal of Artificial Intelligence Research

Organized by: Departemen Teknik Informatika
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
phone. +62725-7850671
Fax. +62725-7850671

Email: jurnal.ijair@gmail.com

View IJAIR Statcounter

Creative Commons License
This work is licensed under  Creative Commons Attribution-ShareAlike 4.0 International License.