Application Of XGBoost-Based Machine Learning Methods To Predict Stunting

(1) * Muhammad Fariz Anhar Mail (Master of Computer Science, Bina Nusantara University, Indonesia)
(2) Benfano Soewito Mail (Master of Computer Science, Bina Nusantara University, Indonesia)
*corresponding author

Abstract


Child stunting remains a major public?health challenge across Asia, impairing growth, cognition, and lifelong productivity. Early risk identification is critical, yet conventional screening offers limited predictive power and scalability. This study evaluates machine?learning approaches for stunting prediction using routinely collected infant data, proposing XGBoost and benchmarking it against Logistic Regression and Random Forest. An Asian infant dataset was compiled, label encoding and standardization were applied, class imbalance was addressed with SMOTE, the three models were trained and hyperparameter tuning was performed within a reproducible pipeline. Performance was assessed using Area Under the ROC Curve (AUC) and confusion matrices. XGBoost with SMOTE achieved the highest AUC (0.85), exceeding Random Forest (0.83) and Logistic Regression (0.73). Confusion?matrix analysis indicates that XGBoost separates stunted from non?stunted cases more effectively. Models trained without SMOTE performed worse, underscoring the value of imbalance correction. These findings suggest that ML assisted screening can enable earlier, data?driven risk stratification and targeted interventions. Practical deployment, however, may be constrained by the need for a GPU enabled computer and an IDE based workflow, motivating external validation and implementation refinement.


Keywords


Machine Learning; Prediction; SMOTE; Stunting; XGBoost

   

DOI

https://doi.org/10.29099/ijair.v9i1.1.1542
      

Article metrics

10.29099/ijair.v9i1.1.1542 Abstract views : 10

   

Cite

   

References


Ali, S., Khorrami, B., Jehanzaib, M., Tariq, A., Ajmal, M., Arshad, A., Shafeeque, M., Dilawar, A., Basit, I., Zhang, L., Sadri, S., Niaz, M. A., Jamil, A., & Khan, S. N. (2023). Spatial Downscaling of GRACE Data Based on XGBoost Model for Improved Understanding of Hydrological Droughts in the Indus Basin Irrigation System (IBIS). Remote Sensing, 15(4). https://doi.org/10.3390/rs15040873

Andriansyah, D.-, & Eka Wulansari Fridayanthie. (2023). Optimization of Support Vector Machine and XGBoost Methods Using Feature Selection to Improve Classification Performance. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 6(2), 484–493. https://doi.org/10.31289/jite.v6i2.8373

Aurima, J., Susaldi, S., Agustina, N., Masturoh, A., Rahmawati, R., & Tresiana Monika Madhe, M. (2021). Faktor-Faktor yang Berhubungan dengan Kejadian Stunting pada Balita di Indonesia. Open Access Jakarta Journal of Health Sciences, 1(2), 43–48. https://doi.org/10.53801/oajjhs.v1i3.23

Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510

Fitri, L. (2018). HUBUNGAN BBLR DAN ASI EKSLUSIF DENGAN KEJADIAN STUNTING DI PUSKESMAS LIMA PULUH PEKANBARU. Jurnal Endurance, 3(1), 131. https://doi.org/10.22216/jen.v3i1.1767

Hajek, P., Abedin, M. Z., & Sivarajah, U. (2023). Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework. Information Systems Frontiers, 25(5), 1985–2003. https://doi.org/10.1007/s10796-022-10346-6

Juhdan Abdullah M, F. A. J. M. I. A. D. I. S. (2023). Hubungan Perkembangan Teknologi AI Terhadap Pembelajaran Mahasiswa. Jurnal Pendidikan Seroja, 4(2).

Komalasari, E. S. R. S. H. I. (2020). Faktor-faktor Penyebab Kejadian Stunting Pada Balita. Majalah Kesehatan Indonesia, 1(2).

Lestari, I., Akbar, M., & Intan, B. (2023). Perbadingan Algoritma Machine Learning Untuk klasifikasi Amenorrhea. Journal of Computer and Information Systems Ampera 4(1).

Marlin, K., Faisal, F.R., Noviandy. (2023). Manfaat dan Tantangan Penggunaan Artificial Intelligences (AI) Chat GPT Terhadap Proses Pendidikan Etika dan Kompetensi Mahasiswa di Perguruan Tinggi. Journal of Science Research, 3(6).

Maulana, A., Faisal, F. R., Noviandy, T. R., Rizkia, T., Idroes, G. M., Tallei, T. E., El-Shazly, M., & Idroes, R. (2023). Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm. Infolitika Journal of Data Science, 1(1), 1–7.

Nababan, A. A., Jannah, M., Aulina, M., & Andrian, D. (2023). PREDIKSI KUALITAS UDARA MENGGUNAKAN XGBOOST DENGAN SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE (SMOTE) BERDASARKAN INDEKS STANDAR PENCEMARAN UDARA (ISPU). Jurnal Teknik Informatika Kaputama (JTIK), 7(1).

Noviandy, T. R., Idroes, G. M., Maulana, A., Hardi, I., Ringga, E. S., & Idroes, R. (2023). Credit Card Fraud Detection for Contemporary Financial Management Using XGBoost-Driven Machine Learning and Data Augmentation Techniques. Indatu Journal of Management and Accounting, 1(1), 29–35.

Rizky Mubarok, M., Herteno, R., Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung Mangkurat Jalan Ahmad Yani Km, I., & Selatan, K. (n.d.). HYPER-PARAMETER TUNING PADA XGBOOST UNTUK PREDIKSI KEBERLANGSUNGAN HIDUP PASIEN GAGAL JANTUNG.

Xu, K., Han, Z., Xu, H., & Bin, L. (2023). Rapid Prediction Model for Urban Floods Based on a Light Gradient Boosting Machine Approach and Hydrological–Hydraulic Model. International Journal of Disaster Risk Science, 14(1), 79–97.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

________________________________________________________

The International Journal of Artificial Intelligence Research

Organized by: Prodi Teknik Informatika Fakultas Teknologi Bisnis dan Sains
Published by: Universitas Dharma Wacana
Jl. Kenanga No. 03 Mulyojati 16C Metro Barat Kota Metro Lampung

Email: jurnal.ijair@gmail.com

View IJAIR Statcounter

Creative Commons License
This work is licensed under  Creative Commons Attribution-ShareAlike 4.0 International License.